Menu Close

GMPLS Network Control Plane Enabling Quantum Encryption in End-to-End Services

Authors

A. Aguado; V. Lopez; J. Martinez-Mateo; M. Peev; D. Lopez; V. Martin

Journal Paper

https://doi.org/10.23919/ONDM.2017.7958519

Publisher URL

https://www.ieee.org/

Publication date

June 2017

Quantum key distribution (QKD) is a novel technology that can be seen as a synchronized source of symmetric keys in two separated domains that is immune to any algorithmic cryptanalysis. This technology makes impossible to copy the quantum states exchanged between two endpoints. Therefore, if implemented properly, QKD generates keys of the highest security based on the fundamental laws of quantum physics. No algorithmic advance would force a change of technology, as opposed to current public key cryptographic protocols, that rely on the complexity of certain mathematical problems. These protocols are at risk due to the advances in quantum computing and should be changed. On the other hand, network services are increasingly requesting more flexibility and network resources. One of the most desired capabilities is having higher level of security for the transmission between remote premises. In this work, we propose a node architecture to provide QKD-enhanced security in end-to-end (E2E) services and analyze the control plane requirements in order to provide such services in transport networks. This work defines and demonstrates for the first time extensions for generalized multi-protocol label switching (GMPLS) networks. Results show how these new services could be integrated in existing operators’ control plane architectures.