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Abstract—The demand of novel IoT and smart city applications
is increasing significantly and it is expected that by 2020 the
number of connected devices will reach 20.41 billion. Many of
these applications and services manage real-time data analytics
with high volumes of data, thus requiring an efficient computing
infrastructure. Edge computing helps to enable this scenario
improving service latency and reducing network saturation. This
computing paradigm consists on the deployment of numerous
smaller data centers located near the data sources. The energy
efficiency is a key challenge to implement this scenario, and the
management of federated edge data centers would benefit from
the use of microgrid energy sources parameterized by user’s
demands. In this research we propose an ANN predictive power
model for GPU-based federated edge data centers based on data
traffic demanded by the application. We validate our approach,
using real traffic for a state-of-the-art driving assistance applica-
tion, obtaining 1 hour ahead power predictions with a normalized
root-mean-square deviation below 7.4% when compared with
real measurements. Our research would help to optimize both
resource management and sizing of edge federations.

Index Terms—Predictive Power Modeling, Edge Computing,
Artificial Neural Network, Driving Assistance

I. INTRODUCTION

Nowadays, Smart Cities together with the Internet of Things
(IoT) technologies help to increase people’s quality of life as
well as efficiency in the management of resources in modern
cities. The data collected by most of these infrastructures
are not processed on the IoT devices, but are sent to the
cloud. Some connected systems alone require a great deal of
computing and data transmission capacity. Advanced Driver
Assistance Systems (ADAS) are a clear example of this.

According to Nvidia, a car equipped with 10 high-resolution
cameras produces 2 gigapixels of data per second that will
generate a processing need of 250 trillion operations per sec-
ond [1]. Clusters based on Graphic Processing Units (GPUs)
are one of the best options to provide the workload require-
ments demanded by these applications, as they are capable
to run analytic algorithms of Deep Learning (DL), and in
particular Deep Neural Networks (DNNs), with a significantly
higher performance than CPUs [2].

Traditionally, Cloud Computing has been developed in large
data centers that collect and process all information in a
centralized manner. Until few years ago, it was a viable

strategy, but the increase in demand for IoT and Smart
City applications makes it difficult to use only this type of
infrastructures in terms of latency and bandwidth. According
to Gartner [3], the number of IoT devices will reach 20.41
billion units by 2020. On the other hand, the edge computing
paradigm aims to distribute the data processing to the edge of
the network instead of centralizing it in a single megastructure.
Thus, minimizing the volume of data sent to the Cloud and
significantly reducing latencies [4].

This computing paradigm is based on the deployment of
numerous and smaller edge data centers, which are located
closer to the data sources, in both urban and rural areas. The
use of this architecture has great advantages: (i) avoids the
saturation of the Cloud, reducing network congestion; (ii) dras-
tically decreases the latency compared to Cloud Computing;
(iii) improves security (e.g. by preprocessing private data prior
delivering the information to the Cloud) and (iv) provides high
reliability (e.g. the edge data center will be able to maintain
some services despite the failure of the provider’s central
servers) [5].

On the other hand, edge data centers have specific restric-
tions (specially in urban areas) since they need to be deployed
efficiently near the data sources. The main requirements are:
(i) occupy a small area, due to the high price of urban areas;
(i1) be low cost, as this computing paradigm demands a high
number of edge infrastructures; (iii) provide an efficient use of
power consumption (not exceeding the energy supplied by the
power grid because they are located near the data sources) thus
improving costs and sustainability; and (iv) be dimensioned to
support the traffic required by IoT services at each data source.
It is worth noting that the power consumption of the edge data
centers will depend on the resource demand of the application
generated by the volume of users.

Our research is focused on power consumption prediction,
to assist in energy optimization policies and dimensioning of
the edge scenario, which will improve their sustainability and
scalability. To this end, we propose a methodology based on
Artificial Neural Networks (ANNs), to predict the future con-
sumption of an GPU-based edge data center using historical
data traffic. We validate our research, using real traffic for
a state-of-the art ADAS application. Our model achieves an
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error below 7.4% interms of power prediction when compared
with real measurements.

The remainder of this paper is organized as follows: Sec-
tion II gives further information on the related work on this
topic. The power modeling and the driving assistance case
of use are presented in Sections III and IV respectively.
Section V describes profusely the experimental results. Finally,
in Section VI the main conclusions are drawn.

II. BACKGROUND

Advanced Driver Assistance Systems (ADAS) arise from
the need to obtain a safer driving experience, reducing the
number of both accidents and victims. ADAS are based on
monitoring the environment and the vehicle, as well as its
occupants, to predict and detect emergency situations. There
exists a great industrial interest in the development of tech-
nologies that allow ADAS, as a precursor of the autonomous
vehicle, to become a reality.

Achieving optimized infrastructures that support these kind
of technologies, in terms of power consumption and automatic
maintenance, are essential requirements to enable their deploy-
ment. The application of ML and DNNs techniques to carry
out these challenges has been tested with very positive results
by some reliable companies. In this research [6], the Google’s
DeepMind team explains how they have managed to reduce
by 40% the energy used in the cooling of their Data Centers,
making use of DNNs-based predictive simulations.

Many research works, as in He et al. [7] and Yuan et al. [8],
present edge-based frameworks for intelligent road sensing in
ADAS applications. Our work help to enhance this kind of
architectures to incorporate the prediction of traffic and edge
power demand so energy-efficient proactive optimizations may
be applied. The present research would be useful to optimize
not only the resource management under power constraints
(e.g. microgrid usage and power capping among others) but
also the dimensioning of edge federations.

On the other hand, many research focus on modeling
the power consumption of GPUs. Research by Nagasaka et
al. [9] and Lim et al. [10] analyze the correlation of GPU’s
performance counters on the energy consumed by CUDA
applications. Ge et al. [11] and Greathouse et al. [12], also
study the effects of frequency management on GPU’s energy
efficiency. However, their research works only take into ac-
count the consumption of entire applications, not considering
power variations during runtime.

Regarding the development of predictive or estimation al-
gorithms, classical models imply important limitations with
respect to the need for linearity in data (or relationships
between features) and missing data. The fast generation of
accurate power models for high-end servers is a complex
challenge that designers have not yet fulfilled by analytical
approaches. Research by Song et al. [13] provides a snapshot
assessment of GPU device runtime power using Machine
Learning techniques. Our research presented in this paper,
based on Deep Learning models of Artificial Neural Networks,
follows a similar approach.

Moreover, our work is also adapted to perform in a service-
oriented application environment together with a predictive
traffic model. This kind of application models, typical from
the edge computing paradigm, are not yet considered in the
current state-of-the-art. To the best of our knowledge our
research is the first to propose GPU-edge power forecasting,
allowing predictive model generation from traffic demand
during runtime and considering a scenario with a high level
of complexity. Using Deep Learning methods gives us great
flexibility and automation in model generation, as well as the
potential to enhance predictions. Also, our research allows the
increase of the prediction windows once the edge data center
is deployed, as the modeling process would have access to a
large amount of real data to learn from.

III. PREDICTIVE POWER MODELING

This work focuses on the accurate prediction of the power
consumption in GPU-based edge data centers running real-
time data analytics. In these systems, the resource require-
ments of the application depend on the data traffic demanded
by users. So, predicting the number of users connected to the
system is a key parameter in order to estimate the future power
demand of the infrastructure.

A. Model description

Formally, we claim that traffic demand prediction (fl\?) for
a certain time instant, A samples into the future, is a function
of past data measurements (7'D) within a window of size
k={0--- Wirafsic} as expressed in Equation 1. For the GPU
power expression in Equation 2, our claim is that the GPU
power (Pgpy) is driven by the allocation of the traffic demand
in the specific device T Dgpy(t) and the clock and memory
frequencies (fork, and fas g respectively). It is important to
note that all the data traffic must be allocated in the computing
resources as in Equation 3, where numGPU s is the number of
GPUs in the  system. Finally, the power prediction for the edge
federation Prppgr depends on the traffic demand prediction
and the power consumption of the GPUs of the data center
federation.

TD(t+A) = Ff(TD(t—k)) (1)

Pepu(t) = f(TDcpu(l), fork, fuem) (2)

- numGPUs

TD(t+A) = Y  TDapu(t+4) (3
GPU=1

Pepee(t+ A) FTD(t+ A), Papu(t+A)) 4

Our predictive model considers specific features of the
target GPU architecture that impact on power in a dynamic
environment. Hence, we are able to predict in advance the
total edge power consumption considering current traffic data
and resource management policies based on workload allo-
cation and Dynamic Voltage and Frequency Scaling (DVFS)
techniques, thus enabling novel proactive optimizations.
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B. Error Metrics

The main challenge of our research is to obtain models that
accurately describe the behavior of both traffic demand and
power consumption. Thus, our metrics need to evaluate the
resulting error in the modeling process. In order to measure
the predictions’ accuracy we use the following error metrics.

Mean Square Deviation (MSD): This metric measures the
average squared difference between the observed value and
its prediction. In this metric all the errors provide the same
weight. We use MSD as loss function during the modeling
process.

Normalized Root Mean Square Deviation (NRMSD): The
RMSD error is used to penalize higher errors in the sample.
We normalize this value so the metric could be presented as
a percentage to facilitate comparisons with other datasets or
models.

Coefficient of determination (R?): This metric provides
the percentage of variance that can be predicted from the
independent variable. Higher coefficient values provide better
predictions.

C. Deep Learning for time series forecasting

Deep Learning recurrent methods, such as those using
LSTM (Long short-term memory) or GRU (Gated Recurrent
Unit) neurons, have been successfully applied to learn time
dependencies automatically in time series prediction prob-
lems [14] and also natively support data entries in sequence
form. Although classical machine learning methods sometimes
provide better results, neural networks can offer the great
advantage of not requiring previous feature engineering, and
are also able to perform where classical methods fail (missing
data, complex nonlinear relationships, multi-step predictions,
etc.). So they become a great candidate for deployment in real-
time systems with minimal human interaction, such as edge
data centers.

An important factor in the development of Deep Learning
algorithms is to adjust all network settings (known as hyperpa-
rameters) to provide satisfactory results. The most significant
hyperparameters are number of layers, number of neurons,
activation functions, loss function, optimizer, learning rate,
learning decay, batch size and number of epochs among others.
The definition of these hyperparameters determines how and
how much the neural network learns during the training phase.

There is no optimal method to find the best configuration
of the model, however it is considered good practice in most
cases to proceed as follows: (i) first develop a model based on
state of the art examples that obtain relatively positive results;
(ii) optimize the neuronal structure (number of neurons and
layers) which will define the learning capacity of the model
and it is recommended to start with small structures; (iii)
then, optimize the most relevant parameters in the method of
training itself (batch size, epochs, loss function and optimizer);
(iv) finally modify the fine adjustment parameters that help
the model to reach more optimal minimums (learning rate,
learning decay and activation functions).

Cloud
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Fig. 1. Proposed ADAS scenario with edge federation

In this paper, we apply Deep Learning recurrent methods
to provide models that accurately predict traffic and power
demand in our case of use scenario.

IV. CASE OF USE: DRIVING ASSISTANCE IN EDGE
COMPUTING

In this section we describe a particular case study for
the application of the devised predictive model presented in
Section III. ADAS scenario presents a dynamic environment
of real-time data analytics that manage high volumes of data,
so its development will rely on the deployment of edge
architectures. Figure 1 presents the proposed architecture of
our ADAS scenario.

A. Traffic demand predictive model

To study a real scenario of vehicle traffic volume in a city
with the potential to deploy edge data centers, we have selected
the dataset Hourly Traffic on Metropolitan Transportation
Authority (MTA) Bridges and Tunnels provided by New York
City Open Data'. This dataset provides data, in a time series
format, showing the number of vehicles (including cars, buses,
trucks and motorcycles) that pass through each of the bridges
and tunnels operated by the MTA per hour in New York City,
USA.

The model obtains as input the traffic in the previous 24h
(Wiraffic = 24) and provides as output the prediction of the
traffic in the next hour (A = 1). In order to configure our neural
networks and to perform the optimization of the hyperparam-
eters in a more automatic way we use Talos?, a Python library
for the optimization of hyperparameters in Keras working over
TensorFlow. Talos incorporates search strategies based on grid
search, random search and probabilistic optimization. In this
work we have used a grid search combined with a random
search algorithm based on Mersenne Twister pseudo-random
generator to speed up the search process.

We selected a specific measurement region (Queens Mid-
town Tunnel) from the data set containing 11,063 data traces
(461 days, one trace per hour) of which we used 65% for
the training phase, 20% for validation and 15% for test. In
addition, data are normalized in the range [-1, 1] to enhance
model convergence, and a cross-validation process has been

lopendata.cityofnewyork.us/
2pypi.org/project/talos/
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Fig. 2. Predicted number of vehicles per hour

conducted in the training data to avoid overfitting in the model.
After the optimization process, the best results found were
obtained with the configuration of the hyperparameters shown
in Table I.

TABLE I
HYPERPARAMETER CONFIGURATION FOR TRAFFIC PREDICTION

3 GRU (64, 32 and 16 neurons)
+ 2 Feedforward (16 and 12 neurons)

Hidden layers:

Batch size: 72

Epochs: 100

Loss function: Mean Square Deviation
Activation function:  ReLU

Optimizer: Nadam

Learning rate: 0.00192

Learning decay: 0.004

Once the model has been trained and validated, the test
is run obtaining a NRMSD of 4.9% and a coefficient R>
of 97.2%. Figure 2 shows part of the test that compares our
predictive model with real traffic data.

B. GPU power modeling and architecture

To model the power consumption in a GPU-based architec-
ture, data have been collected gathering real measurements
from a Sapphire Pulse Radeon RX 580. GPU power con-
sumption, clock frequency and memory frequency have been
measured using the ROCm platform and the Dynamic Kernel
Module Support (DKMS). To build a model that includes
power dependence with these variables, we use the ROCm
System Management Interface to modify the GPU DVFS
modes during runtime.

We use a real workload profile for the ADAS environment.
The workload run in the GPU consists of several Convolutional
Neural Networks (CNNs) running at the same time. Focusing
on the ADAS scenario, vehicles need to include the best
possible models at any time, ready to make the most accurate
predictions for better user experience and safety. These models
are Deep Neural Networks processing thousands of pictures,
thus implying a high computational cost. In order to reduce
computational demand on-board, edge data centers’ GPUs will
train the models and return the results to the vehicles for their
use. In our system each car will work with a single model at a
given time so we have fixed the ratio between cars and neural
network models to 1:1.

Scaled power and epochs

1 1.5 2 25 3 3.5 4 4.5 5

CNNs running concurrently

Fig. 3. Power and epochs normalized per number of CNNs

Apart from the measured GPU’s variables, the number
of completed epochs during a fixed time interval has been
also collected as performance metric. This metric helps us
to evaluate both the performance of several CNNs running
concurrently and the different frequency profiles available in
the GPU. As we have mentioned before, the real workload
will process a high volume of images from on-board cameras
featuring SD resolution (640x480 pixels), therefore the dataset
used in the CNN model for the workload needs to fulfill
this requirement. Consequently, we have selected the ADAS
dataset from Elektra Autonomous Vehicle®. The CVC11 Driver
Face dataset contains images of male and female driver’s faces
while driving in real scenarios recorded with an SD resolution
camera. Their head’s position in each image is tagged in order
to use the data for designing a classification model. The model
used for the CNN is based on a CIFAR-10 model*, a dataset
well-known in the field.

For achieving a complete dataset for our GPU power model,
all the GPU variable combinations are exploited during the
workload. These variables are: a) the memory frequency,
which features three frequencies ranging from 300MHz to
2,000MHz; b) the clock frequency, which features eight fre-
quencies ranging from 300MHz to 1,366MHz; and c) the
number of CNNs running in parallel, ranging from one to
five scripts. We decided to run just up to five of them because
from that point the efficiency (completed epochs compared to
power consumption) diminishes, as seen in Figure 3.

Thus, we obtain 120 possible combinations, each of them
tested for ten minutes. Data logs are recorded every ten
seconds, sent by Kafka Streams and stored in an Apache
Cassandra database. The final dataset includes 6,420 records,
of which we use 70% for training, 20% for validation and
10% for test. The test consists of data belonging to all possible
combinations of model inputs (memory frequency, clock fre-
quency and number of running CNNGs) to verify that the model
is valid for all possible GPU configurations. Also, before
entering the data into the neural network they are normalized
in the range [-1, 1]. For the hyperparameters optimization in
this power model, we apply the same methodology as in the
traffic forecasting model explained in Section III. Best results
are shown in Table II.

Once the model has been trained and validated, the test

3adas.cvc.uab.es/elektra/
“https://keras.io/examples/cifar10_cnn/
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TABLE II
HYPERPARAMETER CONFIGURATION FOR POWER CONSUMPTION

Hidden layers: 2 Feedforward (32 and 12 neurons)
Batch size: 5

Epochs: 140

Loss function: Mean Square Deviation

Activation function:  ReLU
Optimizer: Nadam
Learning rate: 0.002
Learning decay: 0.004

— Real
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Fig. 4. Power model testing

is executed obtaining an NRMSD of 2.45% and an R? of
99.01%. Figure 4 shows a fragment of the test (since the
entire test is too large to be visualized with precision) that
compares the estimations with the real measures of GPU
power consumption.

V. PERFORMANCE EVALUATION
A. Edge dimensioning

The edge data center federation consists of a fixed number
of GPUs, enough to cover the maximum anticipated demand.
Searching in the dataset, the maximum number of vehicles
passing through the road toll within an hour is 6,135. However,
as we have stated before, each GPU can feature up to five CNN
scripts running at the same time. After analyzing the consumed
power and completed epochs per number of CNN scripts
running concurrently (our performance metric), which can be
seen in Figure 3, we found out that the most efficient number
of CNNs per GPU is four, thus the final and total number of
GPUs within our edge infrastructure is 1,534. On the other
hand, the frequency set in the GPUs, for both memory and
clock frequencies, is the maximum allowed in the device. The
use of different frequency ranges will be further analyzed in
our future work.

B. Resource allocation strategies

Edge data centers’ workload may be allocated using dif-
ferent approaches for better performance and higher power
savings. In this paper, we have applied three different strate-
gies: Round Robin, Stack OFF and Stack ON. Round Robin
consists in allocating the minimum number of CNN scripts
per GPU while using the maximum number of devices. Stack
OFF and Stack ON policies allocate the maximum number of
CNN scripts in a GPU before using the next one. The GPUs
that do not feature any CNNs at runtime remain switched off
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Fig. 5. Power prediction for Round Robin strategy
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Fig. 6. Power prediction for Stacked Off strategy

or in idle state for Stack OFF and Stack ON respectively.
There is a trade-off between these two options, the first one
reduces power consumption but makes the system more time-
consuming while the second one penalizes power consumption
to obtain quicker responses.

C. Final results and error metrics

We calculate for each strategy (for both real and predicted
traffic) the number of CNNs and GPUs needed to cover the
demand per timestamp, and the power consumed by it using
the data from the test dataset. Following, we obtained the
error of each strategy by applying our power model and
comparing the estimated power using the real and the predicted
traffic, thus providing the NRMSD error metric. Our results
can be found in Table III. Figures 5, 6 and 7 present the
power predictions for the Round Robin, Stack OFF and Stack
ON allocation strategies respectively. Figure 8 present the
comparison of the power evolution for each allocation policy.

TABLE III
ENERGY AND ERROR PER RESOURCE ALLOCATION STRATEGY

Allocation P(TD) -t P(T'D)-t NRMSD
strategy [kW -h] [kW -h] [%]
Round Robin 144.54 145.87 4.70
Stack OFF 87.41 89.62 4.90
Stack ON 125.60 126.76 4.90

On the other hand, we calculate the NRMSD for the overall
test as the summation of two independent errors, the predicted
traffic NRMSD (4.95%) and the estimated power NRMSD
(2.45%), resulting in an error below 7.4%. Comparing it to the
strategy errors in Table III, we find out a higher value than
those due to the use of the estimated power for calculating
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Fig. 8. Power prediction comparison for the allocation strategies

the power consumed per strategy, thus the error obtained in
each strategy is akin to the predicted traffic error and not to the
overall error. Our proposed scenario for 461 days of real traffic
demand presents a edge data center federation of 1,534 GPUs.
Comparing the energy consumption prediction using the actual
and forecasted traffic, we obtain errors below 2.3 kWh.

From these results, several conclusions are inferred: a)
The model’s accuracy is sufficient for applying optimization
policies one hour in advance; b) our research allows the design
of different resource allocation techniques leading to high
power savings as demonstrated for the ADAS case of use; c)
without these techniques, edge data centers would undergo an
overprovisioning problem resulting in underutilized resources,
which are limited and highly demanded, as well as in higher
economic expenses; d) comparing the energy consumed by the
best and worst strategy, our results show a 38.6% reduction
in power savings, presenting a high potential for the use of
energy-efficient runtime optimizations; e) the results contribute
to define a general methodology for edge data centers’ dimen-
sioning based on GPU architectures running real-time Deep
Learning data processing.

VI. CONCLUSIONS

In this paper we have presented a novel research for the
automatic generation of models, to predict the power behavior
of GPU-based edge data centers during runtime, for real-time
data analytics applications. As a proof of concept, the devised
method has been applied to the ADAS scenario using real
traces of traffic demand, with a real CNN-based application
profile, on real GPU devices. Our approach provides the
automatic generation of a predictive model based on Deep
Learning that forecasts the energy consumption of the edge

infrastructure with an NRMSD error of less than 7.4%. Our
modeling strategy combines a traffic demand prediction model
(based on Recurrent Neural Networks) and a power estimation
model (based on Feedforward neurons) as a function of the
demand executed by the GPUs. In our scenario, by sizing the
edge data center for 1,534 GPUs and comparing the energy
consumption estimation with 461 days of the actual traffic
and forecasted traffic, we obtain errors below 2.3 kWh. This
research would help on the design of new proactive optimiza-
tions to improve energy efficiency in edge data centers, thus
contributing to the research, development and deployment of
service-oriented applications in the edge computing paradigm.
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