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Abstract. In this work, the optimization by genetic algorithms of a system
based on fuzzy logic for the attitude control of a nanosatellite is performed. The
objective of this optimization is to propose different designs of the fuzzy
controller depending on the possible operation modes along the whole mission
of the satellite, to improve its efficiency and performance. Both, mono and multi
objective optimizations, are performed finding that mono objective optimization
leads to results that are not applicable in real systems due to its high cost of
electrical power and that multi objective optimizations give very interesting
results which allow some flexibility to change the controller to a faster one or
one of lower cost.
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1 Introduction

The Attitude Determination and Control Subsystem (ADCS) is critical for the majority
of space missions. The main requirements for this subsystem are: (i) Accuracy: Most
space missions have attitude requirements to operate their payloads that can range from
a few degrees of pointing accuracy up to a fraction of arcsecond for some scientific
missions. (ii) Low power consumption: This is the most important requirement for
small satellite missions, as usually the budget is very limited. The less energy is
required for attitude control the more energy is available for other subsystems and for
the payload. (iii) Stability and robustness: An unstable attitude control may lead to a
mission failure [1].

Many different controllers have been used or studied for space applications. From
traditional satellite control [2] which has relied on classic control theories such as
Proportional Integral and Derivative (PID) [3], or Linear Quadratic Regulator
(LQR) controllers [4], to intelligent control based on Fuzzy logic [5–10] or learning
algorithms like neural networks [11, 12].

Fuzzy logic is a mature control theory [13–16] already used in many commercial
applications [17–19]. It is characterized by simplifying the design process by taking
advantage of the knowledge of selected experts [17, 18, 20]. So, taking into account
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that satellite designers usually have extensive experience in satellite environment and
dynamics, the use of fuzzy logic for control could be highly suitable for small satellites.

However, although fuzzy logic has shown good results when its application to
space missions has been studied [5–10], it has experienced a tepid adoption in global
scale mainly because, in the field of the space technologies, changes are introduced in a
slow and careful way. So, it is necessary not only to develop and implement intelligent
controllers but also to compare and test their performance and efficiency with the
traditional controllers through simulations and on board demonstration.

In Walker’s work [9], a Linear Quadratic Regulator (LQR) control performance
was compared with a fuzzy controller in a CubeSat through simulations, finding that
the fuzzy controller was a lower-cost solution than the LQR and also tends to settle
faster than the LQR.

In Calvo’s work [21], a tailored Adaptive Fuzzy controller was designed for a
nanosatellite mission. Its performance and efficiency were compared, through numer-
ical simulations, for the same specific mission, with a traditional PID controller, which
is the classic control theory, most used and tested in ADCS of satellites. Both con-
trollers were designed in order to be tested on board a satellite called QBITO, as part of
the QB50 mission. The main objective of QB50 was the study of the composition of
the lower thermosphere by launching 50 nanosatellites in the same mission (for more
details, see [21]). The numerical comparison between both controllers, Fuzzy and PID,
showed that the fuzzy controller was much more efficient, in terms of power con-
sumption, and also achieving better precision in general than the PID.

The fuzzy controller developed in [21] was designed to achieve low energy con-
sumption, as the available power of the mission was strongly constrained. However,
depending on the mission requirements and the external perturbations, different oper-
ation modes could be necessary along the whole mission. Those operation modes are
the answer to a variety of needs by getting different combinations of power con-
sumption and accuracy. This work is based on the use and optimization of the fuzzy
logic model developed in [21], to improve its efficiency and performance and to
propose different designs of the fuzzy controller depending on the possible situations
during the mission.

Nowadays, there are multiple optimization systems. The choice between them is
usually based on the form of the objective function within the solution space. In this
case, as the form of the objective function in unknown, one heuristic optimization
method is used: the so-called genetic algorithms (GA), which, although their compu-
tational cost is much higher than the other methods, ensures that the solution obtained
is a good minimum.

Therefore, the objective of this work is the optimization by GA of the attitude
control system based on fuzzy logic of [21] and its comparison with the system
designed there. The same simulator and data used in the design of the control system
are used in the optimization to make the comparison as realistic as possible.

This paper is organized as follows: In Sect. 2 a brief mission overview is depicted
emphasizing the constraints and the requirements to be accomplished. In Sect. 3 an
overview of the attitude control is described, being the Fuzzy controller of [21]
described in Sect. 4. In Sect. 5 monoobjective optimizations are performed and in
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Sect. 6 multiobjective optimizations are performed. Finally, in Sect. 7, the conclusions
of this work are stated and discussed.

2 Mission Overview

In this section, the details of the QB50 mission for which the fuzzy controller was
designed are described. We are going to use the same mission in this work for the
optimization of the controller.

The QB50 mission was a project of the 7th framework program lead by the Von
Karman Institute (VKI). The main objective of this project was to study the compo-
sition of the lower thermosphere by launching together 50 nanosatellites distributed in a
‘string-of-pearls’ configuration. Our research group developed one of these satellites,
called QBITO.

The starting point of the mission was a circular orbit at 380 km of altitude and
i = 98° of inclination (see Fig. 1 where the orbit frame is also represented). Due to
atmospheric drag, the satellite orbits decay until the spacecraft burns in the atmosphere.
The main payload of the satellites was an Ion Neutral Mass Spectrometer (INMS).
The INMS imposed some requirements on the mission which applied directly to the
ADCS. In particular, in the nominal attitude the body reference system axes (see
Fig. 2) should coincide with the orbit reference system one. When the scientific unit
would be acquiring data, it would be necessary to have a pointing accuracy of less

Fig. 1. QBITO inclined orbit representation along with the Orbit (Xo, Yo, Zo) and Inertial
(XI, YI, ZI) Reference Frames (not in scale). i represents the orbit inclination.

972 Á. del Castañedo et al.



than ±10° from the ram velocity vector. In addition, the actual attitude of the satellite
should be known with less than ±2° accuracy. Both requirements should be achievable
until a height of 200 km would be reached, which implies that significant disturbance
torques would have to be counteracted in order to comply with them.

3 Attitude Controller

Since it is not possible to use the real satellite in orbit as a plant in the design process, a
tailored Dynamics, Kinematics and Environment simulator (DKE) was implemented to
be used as the plant to be controlled (see Fig. 3). This figure shows the control scheme
with the typical elements: the plant (DKE), sensors, actuators and the controller.
QBITO had two sets of actuators, three magnetorquers, one per axis; and one
momentum wheel mounted with its axis parallel to the body Y axis (YB). Magnetorquer
for Y axis is only used when the wheel is saturated. As this study is focused on the
controller, the sensors have not been modeled, thus the attitude is known by the
controller with no error, and the actuators are modeled only including a saturation in
their actuation.

The core of the DKE is the equations of motion of a spacecraft with its momentum
exchange devices, see (1), as in [3]. The DKE simulator also includes a space envi-
ronment model and the disturbance torques affecting the satellite dynamics. It also

Fig. 2. Open view of QBITO with all the payloads and ADCS actuators labelled… (XB, YB, ZB)
is the body fixed reference frame.
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provides Sun ephemeris which is used in the satellite attitude control software but is not
used in this paper since no attitude determination is performed. Finally, the main
mission of the DKE is to propagate the satellite dynamic state (attitude and spatial
position) taking into account the control actuations and the disturbance torques.

dX=dt ¼ I�1 Tþ IX�X� Iw
dxw

dt
þ Iwxw �X

� �
ð1Þ

In (1) X is the spacecraft (body reference frame) angular velocity w.r.t. the inertial
reference frame, expressed in body reference frame. T are the external torques, both
disturbance (e.g. aerodynamic drag torque) and control (e.g. magnetorquer actuation).
xw is the momentum wheel rotational speed expressed in body reference frame. I and
Iw are the spacecraft and momentum wheel inertia tensors, respectively, measured in
the body reference frame.

Quaternions are used for the attitude representation:

q ¼ v 1ð Þ sin d
2

� �
v 2ð Þ sin d

2

� �
v 3ð Þ sin d

2

� �
cos d

2

� �� � ð2Þ

where v represents the Euler axis unit vector and d is the angle of the rotation, see
Fig. 4, which describes any possible rotation avoiding singularities.

For the control laws next equations are used:

qE ¼ q�1
S qT ð3Þ

XOB ¼ XOBx XOBy XOBz

� � ð4Þ

where qE, qS and qT are respectively the Error, Spacecraft and Target quaternions and
XOB represents the angular velocity vector of the orbital reference frame w.r.t. the body
reference frame, with its components XOBx, XOBy and XOBz. Unless it is specified, all
the vectors and axes referred to in this paper are expressed in the body reference frame.

From the quaternions in (3) three angles are defined, which are used in the control
laws:

DKE
ActuatorsSensors

Control
(PID/Fuzzy)

Fig. 3. Control schema.
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c ¼ qE 1ð ÞqE 4ð Þ
r ¼ qE 2ð ÞqE 4ð Þ
l ¼ qE 3ð ÞqE 4ð Þ

ð5Þ

Finally, the relationship between quaternions and the Euler angles is given by;

roll ¼ atan 2 qS 2ð ÞqS 3ð Þþ qS 1ð ÞqS 4ð Þð Þ
1�2 qS 1ð Þ2 þ qS 2ð Þ2ð Þ

� �

pitch ¼ asin 2 qS 4ð ÞqS 2ð Þ � qS 3ð ÞqS 1ð Þð Þð Þ
yaw ¼ atan 2 qS 2ð ÞqS 1ð Þþ qS 3ð ÞqS 4ð Þð Þ

1�2 qS 3ð Þ2 þ qS 2ð Þ2ð Þ
� � ð6Þ

4 Fuzzy Controller

Fuzzy controller was designed based on the guidelines on [15]. These recommend
starting with a fuzzified PD controller. In addition, since the dynamics and the actuators
available in the three axes were different, independent controllers were designed for
each of them. A detailed schema of the Fuzzy controller is depicted in Fig. 5. The
difference between the attitude of the satellite and the desired one produces an error that
enters into the control system and is multiplied by the corresponding gain and evalu-
ated in the fuzzy control block. From this block a control torque is obtained, which is
multiplied by another gain. This torque will be the one that realizes the magnetorquer
of the corresponding axis, reason why saturation is applied so that the real values that
the magnetorquer is able to provide are not exceed. These control torques are added to
the external torques that the satellite suffers and are introduced in the DKE (see Fig. 3)

Fig. 4. Orbital Reference Frame and Body Reference Frame for an arbitrary attitude. (X′, Y′, Z′)
and (X′′, Y′′, Z′′) are intermediate frames with no physical meaning. v and d are the Euler axis unit
vector and angle representation of the rotation.
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from where the new attitude of the satellite is obtained and compared again, with the
desired one.

Fuzzy controllers are described by their membership functions. The choice of the
membership functions was based in the knowledge of experts and in some consider-
ations (see [21]): (i) The first consideration is that the membership functions shall be
symmetrical with respect to the central position. (ii) The membership functions selected
are triangular for two reasons: (a) the computational cost is very low due to their
simplicity and (b) the response is more sensitive to small variations around its center
than the one obtained with functions with null derivative at the central position.
(iii) The membership functions have been designed in layers around the central one,
allowing different responses depending on the state of the system. (iv) In addition, the
lateral membership functions are asymmetrical, skewed to the center, producing a more
abrupt response when the system is closer to the nominal position than when it is
farther away from it. Nevertheless, to allow smooth transitions between membership
functions, the overlapping has been set at 50% in all cases. Finally, taking into account
those considerations as well as the acquired knowledge of the system, the membership
functions have been iteratively modified until good behavior has been achieved Here
we show, as an example, the membership functions for r angle and the orbital angular
velocity XOBy

� �
(see Figs. 6 and 7, respectively).

The de-fuzzification Sugeno method was used for all the fuzzy controllers.
Therefore, there are no output membership functions, just a list of discrete values which
represent the actuation fraction to be used by either Tcj (magnetorquers) or Δxw

(momentum wheel). The rules of the controllers were detailed in [21].
Figure 5 shows that a set of gains is needed to set the operating point per controller.

The values of the gains were obtained by performing a calibration process, in which
each axis was tuned separately. The first calibration was made using the Ziegler-

Fig. 5. Fuzzy controller schema.
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Nichols manual method [22]. This method usually gives good results as a first
approximation in a large number of problems, however, the response obtained is
considered too slow for the objectives of the mission, so an ad hoc method of cali-
bration for this mission was devised.

The calibration method consisted in establishing all the gains, simulating a deter-
mined maneuver in each axis separately and analyzing the response to improve the
gains in the next iteration, following a semiautomatic method. The maneuver chosen
was a step of fifty degrees on the axis analyzed, leaving the rest in the nominal position,
at the initial orbit of 400 km. The chosen angle is maintained to zero degrees during the
first 100 s of the simulation and then, a step of 50° is commanded. The attitude and
actuations commanded by the controller for the following 200 s were recorded. This
maneuver was chosen to allow some maneuverability but also, to limit the simulation
time.

From all the possible sets of gains, only those that comply with the following
conditions for the error and its standard deviation were considered:

Fig. 6. Fuzzy membership functions for the r angle.

Fig. 7. Fuzzy membership functions for the orbital angular velocity XOBy
� �

variable for the
Y axis.
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�e ¼
Pt¼200s

t¼150s ej j
N

� 0:01 rad ¼ 0:57 � ð7Þ

re ¼
Xt¼200s

t¼150s
e� �eð Þ2

� 	
= N � 1ð Þ

h i1
2 � 0:11 � ð8Þ

being the instantaneous error defined as:

e ¼ 2acos qE 4ð Þð Þ ð9Þ

Conditions (7) and (8) assure that the response is stable in time and with achievable
accuracy. Then, the optimal gains set was the smallest cumulative cost one, which is
the integral of the instantaneous cost, defined using the absolute values of all the
actuations:

C ¼ Kw Dxwj j þKT

X
Tcj


 

 ð10Þ

where Kw is the power needed for changing the wheel speed; which is simplified as the
maximum power consumption over the maximum acceleration achievable by the
wheel, and KT is the inverse of a reference magnetic field value. For the hardware and
mission studied, the values of those parameters are:

Kw � 4:9 � 10�3 W=ðrpm=sÞ

KT � 3:3 � 104 W=Nm

The gains selected after the tuning process are reflected in Table 1. Note that this
set of gains was obtained to have low power consumption.

In the following sections we proceed with the optimization of the fuzzy control
system gains by GA. First, in Sect. 5, we focus on the accuracy, so the function to be
minimized is the error between the desired attitude and the actual attitude of the
satellite. Second, in Sect. 6, we proceed to a multiobjective optimization of the gains
where both, the accuracy and the power consumption are taken into account. So,
depending on the operation modes, we obtain different set of gains that can be com-
manded to achieve the best performance of the controller and, of course, of the satellite,
along the whole mission.

Table 1. Gain values

Kc Kr Kl KXOBx KXOBy KXOBz KTcx Kx KTcz

34:38 6:86 401:07 26:18 13:79 113:45 4:2� 10�6 �0:44 1:89� 10�5
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5 Gains Monoobjective Optimization

In this section, we proceed to the optimization of the gains of the fuzzy control system
using GA and fulfilling, a single objective. To do this, it will be necessary to define an
objective function to minimize, that introduces the variables that we are optimizing.
Afterwards, values for the optimization method parameters have to be specified.
Finally, after the optimization, results have to be analyzed and conclusions about their
validities in a real system have to be drawn.

The first step for the objective function design is to define the maneuver that will be
used to optimize. To facilitate comparisons between the optimized system and the
system designed in [21], the same maneuver is used. This maneuver sets the desired
angle at 0° during the firsts 100 s, then, commands a 50° step jump in the desired angle
and simulates another 200 s, which means a total of 300 s of simulation. The objective
function is defined as the sum of the instantaneous errors, defined in (9), in each instant
along the maneuver. Table 2 summarizes the selection of parameters made for this
monoobjective optimization.

Both, the size of the population and the total number of generations, have a very
large impact on the computational cost. To have a large number of generations and a
small population size is better than the opposite. The firsts generations with small
population size will, probably, give bad results, but the process of crossover and elite
selection will make that, after a certain number of generations, almost the entire
population will give a good result. For this reason, a population size of 15 and a limit of
150 generations have been chosen.

Concerning reproduction parameters, a crossover ratio of 0.7 has been chosen
(based on references [9] and [23]) and an elite selection has been used, where the two
best individuals from each generation are copied into the next generation.

Once the objective function and the optimization parameters have been defined, the
optimization is performed obtaining the gains in Table 3.

Table 2. First monoobjective optimization parameters

Constraints Bounds [0 0 0; 1000 1000 1000]

Population Population size 15
Initial range [0 0 0; 500 500 500]

Selection Selection function Tournament
Tournament size 4

Reproduction Elite count 2
Crossover fraction 0.7

Mutation Mutation function Gaussian
Crossover Crossover function Scattered
Stopping criteria Maximun number of generations 150

Stall generations 30
Function tolerance 10�9
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Next, the details of the actuations per axis are described. Figures 8 and 9 show the
results for roll angle. As it can be seen in Fig. 8, the attitude response of the satellite
with the optimized gains has a nice performance, since it responds quickly, in less than
50 s, and it is placed in the desired position without stationary error.

Table 4 summarizes the results of the optimization per axis and includes the results
of [21] to compare. The comparison shows that the error is considerably smaller than
the error in [21]. However, Fig. 9 shows that the control with the optimized gains is so
abrupt that it is saturating the magnetorquer constantly. Therefore, this optimized
control is too abrupt and it consumes a lot of electrical power, as Table 4 shows.

Table 3. Gain values from monoobjective optimization

Kc Kr Kl KXOBx KXOBy KXOBz KTcx Kx KTcz

130:84 0:729 150:54 17:12 0:19 32:98 5:58 �196:93 193:35

Fig. 8. Comparison of roll angle from the monoobjective optimization (blue line) and [21]
(red line).

Fig. 9. Comparison of magnetorquer actuation for roll angle from the monoobjective
optimization (blue line) and [21] (red line).
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Figures 10 and 11 show the results for pitch angle. Figure 10 shows that the
optimized control is a fast damped control. Although the over-impulse can be exces-
sive, the control seems to be much better than in [21] in terms of accuracy.

Concerning the acceleration of the moment wheel, Fig. 11 shows that, when the
step occurs, it saturates at maximum deceleration and then saturates at maximum
acceleration to control the angular velocity of the satellite. So, once again, this opti-
mized control is too abrupt and consume a high electric power, although it is not as
evident as in the case of the roll axis.

Table 4. Error and cost of monoobjective optimization and [21]

Method Angle Error (rad) Cost (W)

Calvo et al. [21] Roll 149.9 2.45
Monoobjective optimization Roll 110.16 120.48
Calvo et al. [21] Pitch 117.96 1.79
Monoobjective optimization Pitch 94.76 136.9
Calvo et al. [21] Yaw 150.58 6.41
Monoobjective optimization Yaw 127.27 120.48

Fig. 10. Comparison of rpitch angle from the optimization (blue line) and [21] (red line).

Fig. 11. Comparison of thewheel acceleration from the optimization (blue line) and [21] (red line).
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Results for yaw angle are not presented as they are very similar to roll angle.
To conclude, the optimized control is too abrupt and involves a consumption of

electrical power that does not justify the improvement in accuracy. This means that, to
have a truly optimized controller, the objective function must include in some way the
cost of electrical power, in addition to the error function.

6 Gains Multiobjective Optimization

The results obtained in the previous section show that the optimization of the gains of
the control system by fuzzy logic, with the only objective of error minimization, gives
an inadmissible action: although the error is small, it seems unlikely that the real
satellite will be able to maintain this behavior in its actuators constantly, without adding
the tremendous cost of electric power.

Therefore, it is necessary to perform a multiobjective optimization, in which, in
addition to minimizing the error, the cost of electric power is minimized. To do this, the
objective function of the previous section must be redesigned. In this case, the outputs
of this function are the error, as calculated in Sect. 5, and the cost, calculated as the
integral of the instantaneous cost defined in (10). Pareto frontier will be estimated to
analyze the most interesting points for the satellite performance. From all the possible
sets of gains, only those that comply with conditions in (7) and (8) for the error and its
standard deviation are considered.

Table 5 summarizes the selection of parameters made for three different opti-
mizations. By performing the three optimizations of Table 5, three Pareto fronts are
obtained, the gains obtained are presented in Table 6 and the main results of the
optimizations are summarized in Table 7. Next, results per each axis are commented.

Table 5. Multioobjective optimizations parameters

Optimization First Second Third

Population Population size 30 30 60
Selection Selection function Tournament Tournament Tournament

Tournament size 2 2 2
Reproduction Crossover fraction 0.7 0.8 0.8
Mutation Mutation function Gaussian Constraint

dependent
Constraint
dependent

Crossover Crossover function Scattered Intermediate Intermediate
Multiobjetive
setting

Pareto front fraction 0.7 0.7 0.5

Stopping
criteria

Maximun number of
generations

300 300 400

Stall generations 60 60 60
Function tolerance 10�6 10�6 10�6
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6.1 Roll Results

Figure 12 shows the Pareto frontier for the three optimizations, together with the point
corresponding to [21]. As can be seen, the results of [21] are really good, and none
point which improves it in both objectives has been found. However, by slightly
increasing the cost of the maneuver, much lower error values are obtained as, for
example, Point 1 in Table 7.

To analyze the behavior of the optimized controllers, three points have been chosen:
a point of low consumption (Point 1 in Tables 6 and 7), an intermediate point (Point 2)
and a point with a low error, but whose power consumption is reasonable (Point 3).

Table 6. Gain values from multiobjective optimizations

Roll angle

Kc KXOBx KTcx

Point 1 716.05 80.89 1:77� 10�5

Point 2 599.69 61.83 2:32� 10�5

Point 3 588.37 40.93 3:52� 10�5

Pitch angle
Kr KXOBy Kx

Point 1 0.85 1.68 −1.90
Point 2 0.47 1.20 −1.82
Point 3 8.33 11.44 −0.54
Yaw angle

Kl KXOBz KTcz

Point 1 0.74 0.56 1:27� 10�3

Point 2 0.61 0.67 2:07� 10�4

Point 3 0.80 4.29 0.01

Table 7. Error and cost from multiobjective optimizations and from [21]

Method Angle Error (rad) Cost (W)

Calvo et al. [21] Roll 149.9 2.45
Optimization point 1 Roll 132.53 2.92
Optimization point 2 Roll 124.2 3.97
Optimization point 3 Roll 116.1 6.64
Calvo et al. [21] Pitch 117.96 1.79
Optimization point 1 Pitch 117.26 1.7
Optimization point 2 Pitch 124.7 1.32
Optimization point 3 Pitch 110.0 6.09
Calvo et al. [21] Yaw 150.58 6.41
Optimization point 1 Yaw 135.4 11.03
Optimization point 2 Yaw 131.9 15.09
Optimization point 3 Yaw 126.3 18.15
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Figure 13 shows that the solutions from Pareto frontier represent an intermediate
attitude between the fastest possible, which is optimized only with the aim of mini-
mizing the error, and [21]. On the other hand, Figs. 14 and 15 shows that the cost of
electrical power is similar to that of [21] and totally different from that of the

Fig. 12. Pareto frontier for roll angle.

Fig. 13. Comparison of roll angle for different operation points and [21].

Fig. 14. Comparison of magnetorquer actuation for roll angle for different operation points and
[21].
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monoobjective optimization. The behavior of the selected points is not based on sat-
urating the magnetorquer from one extreme to the other, giving a much more realistic
control attitude performance.

6.2 Pitch Results

Figure 16 shows the Pareto frontier for the three optimizations, together with the point
corresponding to [21]. In this case, even though the manual adjustment is very good, a
point has been found that improves it in both objectives: Point 1 in Table 7.

To analyze the behavior of the points resulting from the optimization, three of them
are selected: a point that improves in both objectives to [21] (Point 1 in Tables 6 and
7), a point of low consumption (Point 2) and a point with low error value, but with a
moderate power consumption (Point 3).

Figures 17, 18 and 19 shows the results of the optimizations. Figure 17 shows that
the behavior of the Pareto frontier selected points and [21] are very similar. Concerning
the actuations, for Points 1, 2 and [21] it would not be necessary to use the magne-
torquer, as the wheel is never saturated (see Fig. 18). However, the monoobjective

Fig. 15. Comparison of cost for roll angle for different operation points and [21].

Fig. 16. Pareto frontier for pitch angle.
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optimization provides such aggressive control, that it becomes necessary to activate the
magnetorquer. The same happens with Point 3. This is the main cause of the differences
of the cost function in Fig. 19.

6.3 Yaw Results

Finally, the same three optimizations are carried out to the yaw axis. In this case no
good results in terms of cost have been found. Figure 20 shows the Pareto frontiers.

Fig. 17. Comparison of pitch angle for different operation points and [21].

Fig. 18. Comparison of wheel acceleration for different operation points and [21].

Fig. 19. Comparison of cost for pitch angle for different operation points and [21].
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To analyze the optimization behavior, three points have been chosen that represent
a point of low consumption (Point 1), an intermediate point (Point 2) and a point with a
low error, but whose power consumption is reasonable (Point 3).

Figures 21, 22 and 23 shows the results of the optimizations. Figure 21 shows that
the response of the multiobjective optimization points is considerably faster than that

Fig. 20. Pareto frontier for yaw angle.

Fig. 21. Comparison of yaw angle for different operation points and [21].

Fig. 22. Comparison of magnetorquer actuation for yaw angle for different operation points and
[21].
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obtained from [21]. This is achieved by saturating the magnetorquer during a greater
time interval (see Fig. 22), increasing the electrical power cost. Notice also that Point 3
achieves a lower error than monoobjective optimization with much lower power
consumption.

7 Conclusions

Summing up, this study shows that the optimization of the fuzzy logic control system
gains must be considered as a multiobjective problem, since the monoobjective opti-
mization leads to results that, although they minimized the error, they are not applicable
in real systems due to its high cost of electrical power and the difficulty of applying
such abrupt control in flight.

For roll axis, interesting sets of gains have been found, because with a slight
increase in electric power with respect to [21], they can significantly reduce the error
between the desired position and the real one during the design maneuver. For the pitch
axis, a point has been found that improves in both objectives, the one obtained in [21]
and that has a quite similar behavior. Finally, in the yaw axis, the optimizations have
not been good enough and, in general terms, we have found points that reduce the error
considerably, but also increase considerably the cost with respect to the control in [21].

Therefore, this study shows that the control solution in [21] is a good one in terms
of cost. In addition, with GA multiobjective optimizations, several points with an
optimal combination of costs and errors were obtained, which allows the flexibility of
changing the controller gains to fasters or lower costs ones depending on the necessity
of the real system. Then, it would be possible to save multiple sets of gains in the on-
board computer memory to generate a new algorithm which, depending on the batteries
state of charge or the maneuver requirement, could select certain values of the gains in
order to optimize the attitude control performance. This situational evaluation option
has a tiny computational cost for the algorithm and, also, to keep multiple values of
gains would be almost irrelevant in the computer memory cost.

Finally, regarding the future work related to the research presented, the following is
worth to be mentioned: (i) Not only the gains but also the membership functions can be
redefined using genetic algorithms, maintaining the general rules (e.g. symmetry) to

Fig. 23. Comparison of cost for yaw angle for different operation points and [21].
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obtain even better fuzzy solutions if possible. (ii) The PID gains could also be rede-
fined using genetic algorithms to compare again both controllers.

References

1. Harland, D.M., Lorenz, D.R.D.: Space Systems Failures. Praxis (2005)
2. Wingrove, R.C.: A Study of Guidance to Reference Trajectories for Lifting Reentry at

Supercircular Velocity. National Aeronautics and Space Administration, Whashington
(1963)

3. Sidi, M.J.: Spacecraft Dynamics and Control: A practical Engineering Approach. Cambridge
University Press (2000)

4. Gadelha de Souza, L.C.: Design of satellite control system using optimal nonlinear theory.
Mech. Based Des. Struc. Mach. 34(4), 351–364 (2006)

5. Ortega, G.: Fuzzy logic techniques for rendezvous and docking of two geostationary
satellites. Telematics Inform. 12(3–4), 213–227 (1995)

6. Steyn, W.H.: Comparison of low-earth-orbit satellite attitude controllers submitted to
controllability constraints. J. Guid. Control Dyn. 17(4), 795–804 (1994)

7. Nagi, F., Ahmed, S., Abidin, A., Nordin, F.: Fuzzy bang-bang relay controller for satellite
attitude control system. Fuzzy Sets Syst. 161, 2104–2125 (2010)

8. Guana, P., Liub, X.-J., Liub, J.-Z.: Adaptive fuzzy sliding mode control for flexible satellite.
Eng. Appl. Artif. Intel. 18, 451–459 (2005)

9. Walker, A.R., Putman, P.T., Cohen, K.: Solely magnetic genetic/fuzzy-attitude-control
algorithm for a cubeSat. J. Spacecr. Rockets 52(6), 1627–1639 (2015)

10. Cheng, C., Shu, S., Cheng, P.: Attitude control of a satellite using fuzzy controllers. Expert
Syst. Appl. 36, 6613–6620 (2009)

11. Zou, A., Dev Kumar, K., Hou, Z.: Quaternion-based adaptive output feedback attitude
control of spacecraft using Chebyshev neural networks. IEEE Trans. Neural Netw. 21(9),
1457–1471 (2010)

12. Fazlyab, A.R., Saberi, F.F., Kabganian, M.: Adaptive attitude controller for a satellite based
on neural network in the presence of unknown external disturbances and actuator faults.
Adv. Space Res. 57(1), 367–377 (2016)

13. Zadeh, L.A.: Fuzzy sets. Inform. Control 8, 338–353 (1965)
14. Lee, C.C.: Fuzzy logic in control systems: Fuzzy logic controller-part I. IEEE Trans. Syst.

Man Cybern. 20, 404–418 (1990)
15. Jantzen, J.: Foundations of Fuzzy Control: A Practical Approach, 2nd edn. Wiley (2013)
16. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and

control. IEEE Trans. Syst. Man, Cybern. 1, 116–132 (1985)
17. Østergaard, J.: Fuzzy logic control of heat exchanger process. In: Gupta, M.M., Saridis, G.

N., Gaines, B.R. (eds.) Fuzzy Automata and Decision Processes, pp. 285–320. North-
Holland, Amsterdam (1977)

18. Oshima, H., Yasunobu, S., Sekino, S.I.: Automatic train operation system based on
predictive fuzzy control. IEEE Int. Workshop Artif. Intell. Ind. Appl., 485–489 (1988)

19. Toshikazu, T., Toshiharu, H.: A practical application of fuzzy control for an air-conditioning
system. Int. J. Approx. Reason. 5, 331–348 (1991)

20. Layne, J., Passino, K.: Fuzzy model reference learning control for cargo ship steering. IEEE
Control Syst. 13(6), 23–34 (1993)

Optimization of Fuzzy Attitude 989



21. Calvo, D., Avilés, T., Lapuerta, V., Laverón-Simavilla, A.: Fuzzy attitude control for a nano
satellite in low earth orbit. Expert Syst. Appl. 58, 102–118 (2016)

22. Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. J. Dyn. Syst.-T.
ASME 115(2B), 759–765 (1993)

23. Hou, L.R., Yi, Z.: Fuzzy logic controller based on genetic algorithms. Fuzzy Sets Syst. 83,
1–10 (1996)

990 Á. del Castañedo et al.


	Optimization of Fuzzy Attitude Control for Nanosatellites
	Abstract
	1 Introduction
	2 Mission Overview
	3 Attitude Controller
	4 Fuzzy Controller
	5 Gains Monoobjective Optimization
	6 Gains Multiobjective Optimization
	6.1 Roll Results
	6.2 Pitch Results
	6.3 Yaw Results

	7 Conclusions
	References




