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a b s t r a c t

Until now, the reigning computing paradigm has been Cloud Computing, whose facilities concentrate in
large and remote areas. Novel data-intensive services with critical latency and bandwidth constraints,
such as autonomous driving and remote health, will suffer under an increasingly saturated network.
On the contrary, Edge Computing brings computing facilities closer to end-users to offload workloads
in Edge Data Centers (EDCs). Nevertheless, Edge Computing raises other concerns like EDC size, energy
consumption, price, and user-centered design. This research addresses these challenges by optimizing
Edge Computing scenarios in two ways, two-phase immersion cooling systems and smart resource
allocation via Deep Reinforcement Learning. To this end, several Edge Computing scenarios have been
modeled, simulated, and optimized with energy-aware strategies using real traces of user demand and
hardware behavior. These scenarios include air-cooled and two-phase immersion-cooled EDCs devised
using hardware prototypes and a resource allocation manager based on an Advantage Actor–Critic
(A2C) agent. Our immersion-cooled EDC’s IT energy model achieved an NRMSD of 3.15% and an R2 of
97.97%. These EDCs yielded an average energy saving of 22.8% compared to air-cooled. Our DRL-based
allocation manager further reduced energy consumption by up to 23.8% in comparison to the baseline.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Technological breakthroughs such as the Internet of Things
IoT) or Artificial Intelligence (AI) facilitate the establishment
f Smart Cities. This novel conception of modern cities has the
otential to empower people in truly diverse ways [1]. According
o McKinsey [2], IoT-connected devices will reach 43 billion by
023, almost three times more than in 2018. Rethinking their
eployment and operation becomes a necessity to adapt and scale
he infrastructure required to satisfy the ever-growing demand
or new applications.

Today, Cloud Computing (CC) stands as the reigning com-
uting paradigm, relying heavily on massive infrastructures that
anage myriads of data in a centralized fashion. These so-called
loud Data Centers (CDCs) will ultimately suffer under an increas-
ngly saturated network, negatively affecting the delay perceived
y the end-users. While these circumstances might not be a
roblem for some applications, those with critical latency and
andwidth constraints, such as autonomous driving [3] or smart
ealthcare [4], will undoubtedly experience performance issues.
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Edge Computing (EC) emerges as an alternative computing
paradigm that rather complements CC. Unlike CC, EC relies on
bringing computing resources closer to data sources, in other
words, closer to the end-users [5]. Edge Data Centers (EDCs) are
placed at the edge of the network, where data sources concen-
trate, offloading CDCs’ tasks. These smaller EDCs have enough
computing resources to process small-to-medium workloads.
EDCs work as a gateway, connecting cloud facilities to edge
devices in the event of more demanding tasks, helping to foster
a more sustainable, scalable, and flexible model. Gartner predicts
that by 2022, 75% of enterprise-generated data will be created
and processed outside centralized CDCs, a massive leap from just
10% in 2018 [6].

This new paradigm presents many advantages [7]: (i) network
congestion is reduced as EC encourages decentralization; (ii) la-
tency plummets as EDCs are closer to the end-users than CDCs;
(iii) security is improved as EDCs can further process information
utilizing safer methods; and (iv) reliability is improved as de-
centralization in EC-based architectures avoids potential central
outages.

1.1. Research challenges and motivation

Although EC solves several problems found in CC, it is not
without its own challenges. Since EDCs are close to end-users,
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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any of them will be placed in high-density urban areas. Thus,
he space employed in these infrastructures must be minimized
nd the energy efficiency should be maximized to avoid potential
ower-grid issues. Furthermore, unlike in CC, where resources
re concentrated in a few CDCs, EC requires many smaller EDCs.
ence, their unit cost should be decreased to scale the solution.
esides, their dimensioning should consider both end-users and
pplications in the area of their deployment to offer better and
heaper services. Note that while most CDCs are deployed in cold
limates to improve their energy efficiency, EDCs are deployed
ear data sources, so they cannot benefit from suitable weather
onditions in most cases.
Our research addresses these challenges in two ways. On

he one hand, State-of-Art (SOA) cooling systems reduce both
he required area and the operational and unit costs of EDCs
ince their space and energy efficiency are greatly improved.
n the other hand, the intelligent and dynamic management of
DCs’ computing resources also reduces energy costs and pro-
ides better services by adapting to the volume and location of
he applications and end-users.

.1.1. Improving edge computing cooling systems
Regardless of the computing paradigm, data centers have two

rimary energy contributors, the Information Technology (IT)
ystems and the cooling infrastructures [8]. On average, the latter
ccounts for 40%, oscillating between 24% and 61%. Historically,
ost data centers have built air-cooled systems to refrigerate

heir rooms. Although widely adopted, these systems are not the
ost efficient solution [9]. SOA cooling systems are based on

mmersion-cooled architectures, in particular two-phase immer-
ion cooling [10]. In this cooling method, the IT equipment is
ubmerged in a close bath full of a dielectric liquid. It aims to
assively (i.e., with no energy consumption) flow the engineered
luid by boiling and condensing it. During operation, the elec-
ronic equipment evaporates the coolant. Then, the coolant vapor
ises to the top, where a heat exchanger condenses it back to the
iquid phase.

Its potential is unmatched [11], being able to reduce cooling
nergy consumption by 95%. While air solutions have a power
ensity between 4 and 40 kW per rack, two-phase immersion
olutions can get up to 250 kW per rack. It yields Power Usage
ffectiveness (PUE) values around 1.02-1.03, close to the global
inimum, and only achieved before with big IT companies’ free
ooling solutions. This strategy is also space-efficient as it has
en times less physical footprint than air solutions (100 kW/m2

ompared to 10 kW/m2). Not only that, but thanks to the high
emperatures required to cool equipment down, this method is
ractically independent of climatic conditions.

.1.2. Improving edge computing resource management
On the other hand, resource allocation and dynamic man-

gement in data centers have always drawn Academia’s atten-
ion [12,13]. Conventional methods are usually based on control
heory [14]. However, data-driven solutions are gaining momen-
um, thanks to the rise of AI. As reported by Google [15], the use
f these data-driven solutions in their data centers has yielded
ooling and total energy savings of 40% and 15%, respectively.
ne of the most promising AI technologies is Deep Reinforcement
earning (DRL). It has been employed in essential fields such
s games, robotics, health, or economics, achieving superhuman
erformance [16]. In resource management, DRL can outper-
orm theory-driven solutions in large infrastructures by capturing
etter their ever-changing and extremely volatile nature [17].
These two strategies help to scale EC facilities further. Mini-

izing the needed space while maximizing the energy efficiency
llows the deployment of more computing resources, thereby
892
making the network less CC-dependent. Furthermore, complex
and powerful systems such as large Graphics Processing Unit
(GPU)-based architectures become viable in this scenario. Thus,
it enables the adoption of advanced applications in EC, as those
based on SOA Deep Learning (DL) (e.g., real-time Computer Vision
(CV), Nature Language Processing (NLP), or IoT-related [18]).

Specific applications that would benefit vastly from EC are
Advanced Driver Assistance Systems (ADAS). They aim to enhance
road and vehicle safety by assisting drivers, who cause around
94% of accidents in the USA [19]. Many of these services utilize
high-resolution cameras, and according to NVIDIA [20], vehicles
with ten of these cameras produce, on average, two gigapixels
per second. Moreover, those vehicles using DL applications may
reach 250 TOPS (trillions of operations per second). This massive
volume of data, together with the critical latency constraints of
these applications [3], makes EC architectures a perfect fit. In fact,
it is actively being researched in Academia, often referred to as
Vehicular Edge Computing (VEC) [21].

1.2. Our proposed approach

To the best of our knowledge, there are not projects in the Lit-
erature that combines both SOA cooling systems (two-phase im-
mersion cooling) and intelligent resource management (AI data-
driven optimization) in the data center scope. Moreover, most
works on EC center around the deployment of small nodes, often
called Mobile Edge Computing (MEC) servers [22], instead of EDCs
with enough computing resources for more demanding tasks like
ADAS. Our research intends to contribute to this matter.

The research presented in this paper is focused on the de-
sign, implementation, and optimization of energy-efficient de-
ployment and dynamic operation in realistic ADAS-based EC sce-
narios. It is achieved through the strategies mentioned above:
two-phase immersion cooling and smart resource management
via DRL. In the evaluated EC scenarios, the immersion-cooled
EDCs obtained an average energy reduction of 22.8% compared
to air-cooled ones. On the other hand, our devised DRL agent
produces savings of up to 23.8% compared with the baseline.

This research’s main contributions are summarized as follows:

• Energy-aware Edge Data Center modeling of two-phase im-
mersion systems using real Edge Computing hardware pro-
totypes with GPUs and an application based on ADAS (intel-
ligent driving assistance) and Deep Learning.
• Energy-aware resource management optimization of real-

istic Edge Computing scenarios using Deep Reinforcement
Learning, our two-phase immersion cooling models, and
Mercury, a SOA 5G-Edge simulator, providing the most re-
alistic simulation possible.

1.3. Organization of the paper

The remainder of this paper is organized as follows. Firstly,
Section 2 gives further information on related work concerning
our research. Section 3 presents the EC scenario to be opti-
mized, featuring the two-phase immersion-cooled EDC model.
Then, Section 4 covers the DRL-based resource allocation man-
ager. Section 5 describes the experimental results. Finally, Sec-
tion 6 presents the main conclusions of this work.

2. Related work

As mentioned in Section 1, the combination of two-phase
immersion cooling and resource allocation optimization in EC
scenarios has not yet been explored in current research. Some
works deal with the former [23,24] and others with the latter [25,
26]. Therefore, we introduce these two topics separately in the
subsequent paragraphs. The summary of each part is found in
Tables 1 and 2, respectively.
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.1. Cooling strategy in edge computing

As for cooling strategies in EC, most of them resemble the
nes used in CC with a focus on space and energy efficiency. His-
orically, most data centers have built air-based cooling systems
o refrigerate their rooms. The same goes for EC. Huawei [27]
nd Rittal [28], which already offer EDCs with air-based cooling
ethods. Hot aisle & cold aisle strategies [29] are the foundation
f this type of solution. It consists in lining up the data center’s
acks to face cold air intakes and hot air exhausts alternatively,
hereby forming cold and hot rows.

However, the most efficient air strategy is free cooling [30],
hich leverages favorable climatology of cold locations to cool
own the data center’s equipment. Cooling costs drop drastically
ince much of the cooling infrastructure is gone. Big IT companies
ike Facebook tend to locate their largest cloud centers in these
reas, achieving unprecedented PUE factors [31], where PUE is
he ratio between the total and IT energy (i.e., useful) energy
osts in a data center. However, this is not viable for EDCs as
ocation-dependent solutions limit the reach of EC by increasing
he perceived delay. Moreover, studies suggest that free cooling
olutions are prone to failures, hurting efficiency [32].
Air-based system’s drawbacks outweigh the advantages [33],

ore so in EC, as free cooling is not feasible in all locations.
ir flows lead to corrosion, vibration, and turbulence. Hence,
otential failures. Air-cooling infrastructure is not space-efficient,
ritical in EC. Furthermore, the air heat transfer coefficient is the
owest among solutions in data centers.

On the other hand, water-based cooling systems solve these
roblems and have better transfer characteristics, thus offering
igher energy savings. It might save around 50% of energy cooling
osts compared to an air-based system [33]. However, it has a
atal flaw, leakages. Water leakages in data centers may be lethal,
ven more in EDCs, since they are deployed in densely populated
reas.
One of the most important water-based systems is rear door

ooling, which features both passive and active versions. It uses
xchangers that remove heat from the source but rely on IT
quipment’s fans to push the airflow. They can handle up to 30
W per rack in optimal situations, but it might be better to aim
or lower levels to be cost-effective [34]. Direct water cooling (or
old plates) [35] offers the maximum power density per rack
mong water solutions, amounting to 80 kW in some commercial
roducts. It also works at higher operating temperatures, thus
aving energy costs. The problem lies in the need for specific
ardware, which limits its repercussion.
Dielectric-liquid-based cooling is on the rise thanks to its

utstanding potential that has put it into the spotlight. The so-
utions vary widely. Indirect cooling [36] resembles some water
olutions as it evades direct contact with the equipment. Un-
ike those strategies, leakages are not such a thread anymore.
owever, indirect cooling does not take advantage of the heat
emoval potential of dielectric liquids since it is not in contact.
nother disadvantage, as in water-based solutions, is that its
esign is specific to the equipment. Hence, it usually cannot be re-
urposed. Moreover, the design, which is centered around many
ipes, makes the equipment challenging to manipulate.
The last dielectric-liquid-based subgroup and the most energy-

fficient is Immersion Cooling. There are two main methods. First,
ne-phase immersion cooling [37] submerges the equipment in
ither an open or semi-open bath. The coolant remains in the
iquid phase. This method leverages the heat transfer potential
hat the liquid has but needs an extensive recirculation system
o cool it down, therefore worsening energy and space efficiency.
urthermore, the coolant needs to work at low temperatures to
void evaporation. Hence, extra energy is needed for its correct

unctioning.

893
Fig. 1. Simplified two-phase immersion cooling tank.

This solution uses two types of coolants, mineral oils and
engineered fluids [38]. The first ones are more widely used due
to their market availability. These chemicals are petroleum-based
distillates (mainly composed of alkanes and cycloalkanes) that
are usually further processed with hydrotreatments. These com-
pounds present many disadvantages. Even with the special treat-
ment that adds resistance, oils are still flammable. Their viscosity
hurts the heat transfer capabilities and an efficient recirculation
through the cooling system. Mineral oils have high Global Warm-
ing Potential (GWP) (i.e., significant toxicity) and are not entirely
biodegradable, just around 30%–40%. They are also not clean, thus
hindering maintenance operations by data center operators. On
the other hand, engineered fluids are specifically designed for
tasks such as cooling. Even though they tend to be more expen-
sive, they are usually non-flammable, cleaner, safer to operate,
almost entirely biodegradable (+90%). Moreover, they also have
low toxicity, a low GWP, and higher heat transfer coefficients.

Two-phase immersion cooling is the most promising method
of all. As stated before [11], it can reduce cooling energy con-
sumption by 95%. While air solutions have a power density be-
tween 4 and 40 kW per rack, two-phase immersion solutions
can get to 250 kW per rack. It yields PUE values of 1.02-1.03,
close to the global minimum, and only achieved before with
free cooling solutions of large IT enterprises. The advantage over
this air method is that it is geographically agnostic, vital for EC
solutions. This strategy is also space-efficient as it has ten times
less physical footprint than air solutions (100 kW/m2 compared to
0 kW/m2). This space reduction is also huge for the deployment
f EDCs. Moreover, it does not need specific casing or equipment.
hus it can adapt better than other water or dielectric liquid
olutions.
The coolant’s recirculating method is the key to both out-

tanding energy and space efficiencies [39]. It aims to passively
i.e., with no energy consumption) flow the engineered fluid by
oiling and condensing it, using high operating temperatures
more than 60 ◦C). During operation, the electronic equipment
mmersed in a closed bath evaporates the coolant. Then, the
oolant’s vapor rises to the top, where a heat exchanger con-
enses it back to the liquid phase. The heat exchanger placed
nside the tank circulates water and transfers it to a dry cooler,
here it is cooled down. This part is the only source of energy
onsumption in this method, and it is close to zero since the
perating temperatures of both water and coolant are the highest
mong cooling solutions. Fig. 1 depicts a simplified version of a
wo-phase immersion cooling tank as an EDC to illustrate how it
orks better.
In the literature, most two-phase immersion cooling works

ocus on analyzing a prototype without any specific real-world
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ooling systems overview.
Cooling
System

Advantages Disadvantages

Air-based
Cooling

Most widespread
systems that can
harness climatology.

High energy and space
costs, and location
dependent.

Hot Aisle &
Cold Aisle

Aisle distribution of
separated hot and cold
airflows.

Prone to undesired
hotspots and
turbulence.

Free Cooling Outdoor heat exchange.
Massive energy savings.

Needs favorable
climatology and
another cooling system
for safety.

Water-based
Cooling

Solves air problems
like corrosion and
vibration. Higher heat
transfer coefficient.

Lower heat transfer
coefficient than
dielectric-liquid-based.
Leakages are lethal.

Rear Door
Cooling

Remove heat from the
source using water.

Relies on server’s fans.
Not cost efficient.

Cold Plates Ultra-low temperature
water not needed.

High economic costs.
Needs specific IT
equipment.

Dielectric-
liquid-based
Cooling

Much more safe and
energy efficient than
water systems.

Still under
development. Not
widely used.

Indirect
Cooling

No lethal leakages and
better heat removal
coefficient.

Does not leverage the
liquid’s heat removal
potential (not direct
contact).

One-phase
Immersion
Cooling

Heat transfer potential
in open baths. Low
pressures.

Needs low coolant
temperatures using an
external circuit. Still in
development.

Two-phase
Immersion
Cooling

Passive method that
saves up to 95% of
cooling energy (most
among all options).

Potential high
pressures in closed
baths. Still in
development.

applications since this technology is still in development. Kanbur
et al. [23] propose a system featuring a pump, a server tank, and
a dry tower. Both thermal and economic analyses were carried
out using workloads between 3.43 and 9.17 kW. The achieved
PUE lies between 1.15-1.4. Wu et al. [40] build and analyze a
similar system, but placed in a tropical environment instead. Like
this research, they use the coolant Novec 7100. The authors again
focus on agnostic workloads. On the other hand, our work shifts
to applications in real-world settings and their optimization.

Outside of Academia, two-phase immersion cooling is also a
ork in progress. Not many companies have ventured to develop
market-ready product. BitFury and its wholly-owned subsidiary
llied Control, renamed in 2021 as Liquid Stack [41], developed in
014 the award-winning DataTank, a container unit with a two-
hase immersion-cooled rack of each for up to 252 kW. It has
cost of less than one dollar per watt and is designed for 19-

nch rails. They claim to achieve a PUE of 1.02-1.03, and it has
nly been used for mining cryptocurrency since its release. This
esearch wants to broaden the scope of a cooling system that
resents many opportunities.
Though still a prototype, another solution is the Open Com-

ute Project (OCP)-compliant two-phase immersion cooling tank
y Wiwynn [42]. The tank has a thermal design power of 100 kW,
lthough it was tested using just 60 OCP hardware nodes of 1 kW
ach. It achieves a PUE of 1.02. The tank was first showcased at
he OCP 2019 Summit. Something that was not explored in either
f these works is the engineered fluid’s underlying heat transfer
otential. The coolant must be explained first to understand why
his property is crucial.

Both products and this research use Novec engineered fluids
y 3M. In our case, the chosen coolant is 3M’s Novec 7100. It is
hydrofluoroether with a boiling point of 61 ◦C, albeit a boiling
894
point range between 50 ◦C and 99 ◦C. This dynamic feature is
stressed in work presented by T. L. Bergman et al. [43]. It shows
the relation between the heat transfer capacity and the surface
temperature. There are four boiling regimes, and most solutions
work in the first regime (free convection) due to unaware or
conservative views. However, the coolant’s true potential is way
up high at the end of the second regime (nucleate). This fact
could further enhance two-phase immersion cooling systems by
making them more efficient in stable conditions.

Trying to work at maximum efficiency is challenging as sur-
passing that range would cause a sharp drop in performance.
In addition, the last two regimes (transition and film) also have
larger gas volumes making the coolant unstable. It is referred
to as the boiling crisis. For this reason, predictive and proactive
resource allocation is vital in EC scenarios that utilize two-phase
immersion cooling. This issue leads us to the optimization of
resource allocation. Combining both two-phase immersion cool-
ing and smart resource management would boost the energy
efficiency in EC architectures.

2.2. Resource allocation in edge computing

For many years, the optimization of resources has been ex-
plored in EC, CC, and data centers in general. Resource allocation
strategies can improve the performance of many aspects (e.g., de-
lay and energy) vastly. There exist many approaches to it [44,45].
We describe and compare several works that at least partially
relate to what we want to achieve with this research.

M. Ghobaei-Arani et al. [26] propose a Learning Automata
called ControCity that balances elasticity, delay, and utilization
for a CC case study. Compared to other solutions, it improves
elasticity and resource allocation by 5.4% and 8.4%. Another work
from the same authors [46] addresses a Fog Computing (FC) case
study closer to the EC case. They employ a moth-flame algorithm
to optimize the quality of service and total execution time. Both
papers make an effort to evaluate their solutions with a well-
established simulator for CC and FC, respectively (CloudSim and
iFogSim). They also use real-world traces to obtain the most
realistic results possible. However, they do not consider energy
costs that are relevant in contexts like these.

Regarding EC, some works apply DRL techniques to solve
resource allocation problems in MEC-based applications like in
our research. J. Xu et al. [47] propose a DRL algorithm to minimize
delay and energy costs by offloading tasks to an energy harvesting
MEC server. They mix online and offline learning to speed up
training. X. Chen et al. [48] optimize a densely populated MEC
scenario for offloading strategies based on task, energy queue
state, and channel qualities between user equipment and access
points. They devise a double Deep Q-Network (DQN) to solve it.

D. Zheng et al. [49] propose a model-free DQN-based re-
source manager for EC applications. It is not energy-aware as the
only inputs are utilization and distance of edge servers. Z. Ning
et al. [50] optimize a VEC application using a two-way algorithm,
being one part a double DQN. They achieve a 90% execution time
reduction for the non-DRL-based part and 15% for the DRL-based
part compared with another DQN model.

Finally, R. Cárdenas et al. [51–53] present a heuristic algorithm
in their work for the 5G-enabled and data-intensive simulator
Mercury. For testing it, they envision an extensive and well-
thought-out use case for high-performance EC with multiple EDCs
and evaluate it in Mercury. Furthermore, they analyze the impact
of their algorithm on energy efficiency thoroughly in their results.
However, they lack a proactive approach to the energy problem,
as their heuristics only take into account location-aware informa-
tion (it assigns workloads to the closest EDCs). While this helps
end-users reduce the delay they perceive, EC solutions already
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Fig. 2. The devised Edge Computing scenario.

chieve extremely low delays thanks to how they are devised.
hus, energy efficiency becomes as important as the perceived
elay, if not more.
What makes our research different from the cited EC papers is

he optimization objective and the EC scenario. On the one hand,
heir optimization focuses most times on the utilization of MEC
ervers. The only contemplated energy costs are derived from
atency issues due to saturation. Instead, our research provides
holistic view of the energy consumed in EDCs, both in IT

nd cooling. On the other hand, their EC infrastructure concept
s limited to independent MEC servers, often with limited CPU
ardware. In our case, the EDCs’ equipment includes multi-GPU
rchitectures that can process bigger workloads.
For these two reasons, our research envisions a more realistic

erspective of the energy problem in EC. These works usually
mploy agnostic applications to which they assign a utilization
actor. On the contrary, this paper uses realistic IT and cooling
nergy models obtained with EC hardware data that runs a spe-
ific EC application. Hence, this work presents a comprehensive
nd energy-conscious approach to EC.

. Edge computing scenario modeling

This Section covers the design and implementation of power
onsumption models required to simulate and optimize the en-
rgy efficiency in EC scenarios. To that extent, the devised EC
cenarios are introduced first. This paper has designed a sin-
le Radio Access Network (RAN), as shown in Fig. 2. The User
quipment (UE) (i.e., the vehicles) runs an ADAS application and
equests sessions to the EC network for processing the corre-
ponding workloads. The network’s core decides in which EDC
re new incoming sessions processed. In the EDC, the sessions are
tored and computed using one of its available Processing Units
PUs). The offloading model is akin to the Function as a Service
FaaS) concept [54]. For this purpose, resources are reserved
emporarily, and only when UE requests them, the sessions are
reated. Communication-wise, the sessions are conveyed through
he Access Points (APs). First, the UE interacts with the nearest AP.
hen, the AP does so with the EDC assigned by the network’s core.
he assignment is performed by the Software-Defined Network
SDN) controller that uses a DRL-based agent that analyzes the
nergy status of the EDCs in order to make its decision.
Since we do not have access to an already deployed EC in-

rastructure, our focus remains on simulating and optimizing the
ost realistic EC scenarios possible. To this end, we leverage

he potential of the EC simulator Mercury [51–53]. Mercury fea-
ures many options to implement EC energy-related models while
895
offering SOA 5G-enabled EC dynamics simulation. To obtain a
realistic energy behavior of the scenario, Energy models of EDCs
are developed and implemented in the simulator. This decision
was made because their power consumption is by far the highest
amongst the elements in the scenario, so it becomes crucial to
model and optimize them.

To obtain these models, we have built different EDC proto-
types and devised a real-world ADAS application. This application
has been tested in these prototypes to analyze the energy profile.
Consequently, the first step of the solution is to explain the ADAS
application. To make its design realistic, it should be viable in
an actual EC context. The ADAS application is based on one of
our previous publications [55]. To this end, we devised a DL-
based service that alerts drivers when they lose concentration
on the road. A Convolutional Neural Network (CNN) estimates
the driver’s head position using video footage. If drivers spend
an excessive amount of time looking to the sides, the algorithm
warns them. Hence, it aims to improve road safety. The workloads
generated by the vehicles and processed in the EDCs are for
training the algorithm instead of making predictions. Training DL
algorithms are known for being computationally expensive. There
exist in both Academia and Industry many efforts to accomplish
efficient DL training in EC-like layouts (see Federated Learning).
Thanks to the offloading, the hardware in the vehicles would
need less processing power, thereby lowering the economic costs.
Moreover, the quality of the predictions would also improve as
they can update more frequently with minimal delay. In fact, the
information from different users in the network can be shared
thanks to the EC layout.

3.1. Edge data center modeling

Now that the application has been defined, it needs to be
tested on EC hardware (i.e., the mentioned prototypes) to analyze
the energy behavior and obtain a model. This hardware would
comprise the EDCs’ PUs (i.e., the IT equipment) in an actual EC
scenario (Fig. 2). Unequivocally, the key energy contributors in
EDCs and data centers alike are the IT equipment and the cooling
system. Therefore, our EDC power consumption model considers
both sources (Eq. (1)). Others, such as room lighting, are neglected
since their contribution is much lower and relatively constant. As
introduced in Section 1, a key element of our research is two-
phase immersion cooling. For this reason, we built one prototype
based on this SOA cooling system and another one based on air
cooling that serves as a baseline. The IT equipment and cooling
system are modeled with data from EC-like hardware to achieve
the most realistic simulations for each of them. Since the ap-
plication is based on a DL algorithm, both prototypes employ
GPUs as the IT equipment, which are well-suited for this type of
workload.

PEDC = PIT + Pcooling (1)

PEDC = EDC power consumption [W]
IT = IT Equipment power consumption [W]
cooling = cooling power consumption [W]

.1.1. Air-cooled edge data center
The air-cooled prototype features a Sapphire Pulse Radeon RX

80 GPU as the IT equipment. The energy model was published
n one of our previous publications [55], achieving a Normalized
oot Mean Squared Error (NRMSD) of 99.01% and a Coefficient of
etermination (R2) of 2.45%. The model was also already tested
uccessfully in Mercury [51]. In short, the modeling process con-
isted of three well-distinguished parts: (i) the ADAS application
unning on the GPU for different configurations of the GPU’s
lock frequencies (main and memory) and number of parallel
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Reference Case Study Technique Metric Tool Advantages Limitations

M. Ghobaei-Arani
et al. [26]

Cloud Computing Learning automata Elasticity, delay, and
utilization

CloudSim Multi-objective
optimization. Tested
with real data traces.

No energy
optimization. Cloud
limitations (compared
to Edge).

M. Ghobaei-Arani
et al. [46]

Fog Computing Moth-flame algorithm QoS and total
execution time

iFogSim Execution and
transfer time
evaluation.
Real-world case
study. Tested with a
Fog-specific
simulation tool.

No energy
optimization. No load
balancing.

J. Xu et al. [47] Mobile Edge
Computing

DRL (DQN) QoS and energy Simulation (NA) Comprehensive
environment model.
Energy harvesting.
Auto-scaling. Fast
convergence.

Cloud data traces.
Generic energy
consumption model.
Lack of
heterogeneous
infrastructure.

X. Chen et al. [48] Mobile Edge
Computing

DRL (DDQN) Task execution delay,
drops, queuing delay,
and failure penalty

Simulation (NA) UE-based
optimization for
tasks. Comprehensive
task model. Price
implications.

Generic energy
consumption models.
Not tested with
real-world
applications. No real
data traces.

D. Zheng et al.
[49]

Edge Computing DRL (DQN) Operational costs Simulation (NA) Simple yet effective
solution. High
scalability.

No energy model.
Ad-Hoc simulation
tool.

Z. Ning et al. [50] Vehicular Edge
Computing

DRL (DDQN) QoE Simulation (Python) Joint task scheduling
and resource
allocation
optimization.
Mobility-based layout.

No specific
application. No real
data traces. Ad-Hoc
simulation tool.

R. Cárdenas et al.
[51–53]

High-Performance
Edge Computing

Heuristics Delay Mercury Real-world use case.
High performance IT
(GPUs) energy
models. Tested with a
specific 5G Edge
simulator.

No proactive energy
approach. No cooling
models, especially
two-phase
immersion.
sessions (several ADAS workloads running in the GPU at the
same time); (ii) the monitoring system in the background that
collects the GPU’s status (e.g., power consumption, temperature,
and utilization); (iii) and the power consumption model that fits
the collected GPU data using the GPU’s clock frequencies and the
number of parallel sessions as inputs. The model is based on a
FeedForward Neural Network (FNN) and summarized in Eq. (2).

PIT = PGPU = f (wADAS, freqmain, freqmem) (2)

PGPU = GPU power consumption [W]
wADAS = ADAS workload (Sessions running concurrently in the
GPU)
freqmain = GPU’s main clock frequency [Hz]
freqmem = GPU’s memory clock frequency [Hz]

On the other hand, the cooling energy model of this EDC is
based on a publication from J. Moore et al. [56]. It envisions
the most conventional air cooling strategy, hot aisle & cold aisle.
The model has only two parameters: the IT power consumption
PIT that depends on the user demand, and the equipment inlet
temperature Tinlet that is fixed during the simulations. Eq. (3)
shows the power consumption model adapted to our air-cooled
system.

Pcooling =
PIT

0.0068 · T 2
inlet + 0.0008 · Tinlet + 0.458

(3)

3.1.2. Two-phase immersion-cooled edge data center
The two-phase immersion-cooled EDC prototype employs a

Sapphire Pulse Radeon RX 570 for its IT equipment. The char-
acteristics are practically similar to the previous model. While
896
Fig. 3. The modeled two-phase immersion-cooled prototype.

the procedure to obtain the IT equipment’s power consumption
model is the same as in the air-based case, the prototype is en-
tirely different to fit into a two-phase immersion cooling system.
Fig. 3 shows the prototype that was utilized to obtain the power
consumption model.

This prototype features a heat exchanger mechanism, unlike in
our previous publication [57]. The system circulates cold water
that passes through two liquid cooling blocks. On their surface,
the gas originated from the coolant’s evaporation during runtime
is condensed. The main GPU chip has a graphite and copper sheet
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Fig. 4. Energy model’s loss curves and predictions of the immersion-cooled EDC’s IT equipment.
Fig. 5. Front (left) and rear (right) views of our full-size EDC currently in development.
Table 3
Hyperparameters of the immersion-cooled EDC’s IT equipment
power consumption model.
Hyperparameter Value

Hidden layers x1 FeedForward
Neurons 512
Train-Val-Test split 70%, 20%, 10%
Scaling method Min–Max
Scaling range [0,1]
Batch size 128
Epochs 150
Loss function MSD
Activation function ReLU
Optimizer Nadam
Learning rate 0.001

mechanically attached to distribute the heat better. There were
no gas leakages around the sealing, and the coolant could reach
61 ◦C (i.e., the boiling point).

Table 3 lists the final model’s hyperparameters. The results
show an NRMSD of 3.15% and an R2 of 97.97%. On the other hand,
ig. 4 depicts the training and validation curves (left) and the
ower consumption predictions using some samples from the test
et (right). It presents stable training without overfitting issues.
s the model’s inputs comprise three discrete inputs, the model’s
utput is also discrete.
Two-phase immersion cooling systems consume very little

nergy. The only significant element that needs consideration is
897
the pump that recirculates the heat exchanger’s water. Therefore,
the cooling system energy model is based solely on this element.
This research models the pump Wilo IPL 50/115-0,75/2 installed
in our full-size EDC that we are developing for this project [58]
(Fig. 5).

The pump’s power consumption model employs the informa-
tion found in its datasheet. In this documentation, the pump’s
shaft power Ps and efficiency ηm are expressed as a function of
the flow rate f . The pump’s power consumption Pm is derived
from these two variables, as in Eq. (4). Fig. 6 shows this power
consumption in terms of the flow rate. Pumps usually achieve
their highest efficiency around the middle of the flow range,
coinciding with the impeller at its full size. Pumps are meant to
work at maximum efficiency, not just to save energy but also to
avoid potential damage because of saturation.

Pcooling [W ] = Pm =
Ps(f )
ηm(f )

(4)

The last modeling step is to compute the flow rate as a func-
tion of the heat dissipation in the IT equipment and the desired
temperature difference between the heat exchanger’s input and
output in the two-phase immersion EDC. Fig. 1 in Section 2
depicts this architecture. The dissipated power Q is the heat
generated on the GPUs’ chips surface (i.e., the IT power con-
sumption). Since the IT power consumption depends on the IT
demand, the only control variable is the temperature difference
∆T = T − T . Eqs. (5) to (7) show how to compute the flow
out in
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Fig. 6. Pump’s power consumption Pm as a function of the flow rate f .

ate f as a function of the temperature difference ∆T through a
implified scenario using a circular pipe.

= fm · Cp ·∆T (5)

f =
fm

277.78 · ρ
(6)

f =
Q

277.78 · ρ · Cp ·∆T
(7)

= PIT , power dissipation in the IT equipment [W or J/s]
m = mass flow rate [g/s]
p = specific heat capacity [4.18 J/g◦ K]
T = Tout − Tin, temperature difference [◦ K]

f = flow rate [m3/h]
ρ = density [1 g/cm3]
1 m3/h = 277.78 cm3/s

4. Deep reinforcement learning-based resource allocation
manager

All elements in the scenario but the network’s core have been
defined already. As mentioned in Section 3, the core’s role is to
map the AP-EDC connections dynamically. So, allocating com-
puting resources in the EDCs to process the vehicles’ workloads
is done according to this mapping. The goal of this mapping
is to obtain the highest energy efficiency possible. As stated in
Section 1, our key contributions to the energy problem in EC are
two-fold: two-phase immersion cooling (discussed in Section 3)
and smart resource allocation via DRL. In this Section, the re-
source manager of the network’s core is devised as a DRL agent
using an Advantage Actor–Critic (A2C) model.

4.1. Problem description

During the simulation, several vehicles are driving around
a city using the DL-based ADAS application. These vehicles re-
quest computing resources to the EC network for processing the
training of the DL algorithm. Each of these requests generates
a session in the EC network. Then, the network’s core allocates
these sessions through the APs to the available GPUs in the
EDCs to compute them. Once a session has finished, the results
are sent back to the corresponding vehicle, if needed. To decide
which EDC processes each session, the core updates the AP-EDC
connections dynamically based on the energy status of the EDCs.
Since the resources (i.e., the GPUs) in the EDCs are limited and
the power consumption behaves non-linearly, the network’s core
is in charge of efficiently allocating these sessions to optimize
the energy efficiency in the network. To learn more about the
scenario and simulation dynamics, there exist other works that
address them thoroughly [51–53].
898
4.2. Deep reinforcement learning formulation

As explained in the previous Section, during the EC simulation,
the resource manager via the SDN controller updates periodically
and one-by-one the connections between APs and EDCs. To de-
cide how to assign them, it receives the energy status of the EDCs.
This information features metrics, such as power consumption
or utilization. Therefore, the DRL agent’s goal is to manage the
AP-EDC routing using the information from the EDCs to optimize
energy efficiency.

The foundation of DRL is Reinforcement Learning (RL). In RL
problems, an agent interacts with an environment in discrete
timesteps. In each timestep, it takes an action based on the
current state of the environment, moves to a new state, and
receives a reward. The goal is to maximize the cumulative reward.
Formally speaking, it can be described as a Markov Decision
Process (MDP). As in any other Markov Process, it obeys the
Markov property (i.e., a process depends only on the present
state). It is formed by a 5-tuple, ⟨S, A, P, R, γ ⟩, where:

• S is the set of states of the environment. In our problem, the
states are information about the EDCs’ status. For each EDC
status EDC i

st , the information is comprised of: the IT power
consumption P i

IT , the cooling power consumption P i
cooling , the

total power consumption P i
EDC , and the utilization factor ui.

The state space for N EDCs is formulated as:

S = {s = (EDC0
st , . . . , EDC

i
st , . . . , EDC

N
st )} (8)

EDC i
st = {P

i
IT , P

i
cooling , P

i
EDC , u

i
} (9)

• A is the set of actions the agent may take. The actions
correspond to the selection of an EDC (EDC i) to pair a certain
AP. Thus, the action space is comprised of all the EDCs in the
scenario. For N EDCs, it is defined as follows:

A = {a = (EDC0, . . . , EDC i, . . . , EDCN )} (10)

• P : S×A×S → P(S) is the transition probability matrix. Each
value is a probability of going from one state s to another s′
after taking action a. It is a property of the environment, the
EC scenario. Since our DRL algorithm is model-free, it does
not learn the state-transition probabilities and only samples
from the environment.
• R : S × A × S → R is the reward function. Our idea is to

minimize the total power consumption to maximize energy
savings in the scenario. Consequently, the reward function
for timestep t and N EDCs that minimizes the consumed
energy is denoted as in Eq. (11). Note that for a state–action
pair, the reward is based on the state that follows.

rt = R(st , at , st+1) = −
N∑
i=0

P i
IT ,t+1 + P i

cooling,t+1

= −

N∑
i=0

P i
EDC,t+1 (11)

• γ ∈ (0, 1) is the discount factor for balancing the impor-
tance of immediate and future rewards, and converging the
cumulative reward, return R, to finite values. In our case,
the discounted return is applied for calculating the return
of a trajectory T (i.e., a sequence of state–action pairs). The
return for a timestep t is as follow:

Rt = R(s0, a0, . . . , st , at ) =
T−1∑
t ′=t

γ t ′−t rt ′ (12)
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To reduce energy consumption, we now need an agent that
ollows a policy based on this MDP. The algorithm and its archi-
ecture are thoroughly explained in Section 4.3. Nevertheless, let
s first clarify how the agent can attain its energy-conscious goal
ith an example that combines the scenario dynamics explained

n Section 3 with this DRL formulation.
In the scenario, we have an EC network with EDCs and APs

istributed across a populated region. Each EDC features a fixed
umber of GPUs that can store up to a predefined number of
essions. On the other hand, drivers around this region use the
DAS application described in Section 3. Each vehicle runs a
L-based model whose inferences assist the driver during their
ides. The users send petitions to the EC network periodically for
raining the application’s algorithm. The 5G protocols that use
hese petitions and sessions are described in-depth in previous
orks [51–53]. Once the request is accepted, the network’s core
reates and assigns a session to an EDC. During the session, the
ser sends the images collected during their drive to the EDC’s
PU, where the training happens. Once the training is done, if the
ew model shows a better performance than the onboard one, it
s sent back to the vehicle. In parallel to this, the network’s core
waits new incoming petitions.
It is here, in the core, where the agent’s goal is to interact in

he simulation by selecting an EDC to send the sessions (action
t ) each timestep t . This action at enables the connection to the
elected EDC via the APs. The policy’s decision is based on the
nergy information of the EDCs (state st ). After the action is taken,
he agent and simulator move to the next timestep t + 1, when
interacting again with a new energy situation in the EDCs (state
st+1). It also receives a reward rt for the action it previously took.
Note that the frequency of new timesteps t is high enough so that
the core is aware of all new incoming sessions.

This procedure is repeated until the end of the simulation.
We collect all interactions during the entire process (i.e., states,
actions, and rewards) to update the agent’s policy before rerun-
ning it again (Section 4.5 explains how the update works). It
is expected that with enough simulations and a reward based
on minimizing the energy consumption, the agent will learn
a good policy for distributing the sessions in the EDC in an
energy-conscious manner.

4.3. Advantage actor–critic agent

Agents must act accordingly to a policy to try to maximize the
return. A policy is a rule that the agent obeys to take an action
based on a state. As stated before, the DRL model employed is
an A2C from the actor–critic family. In actor–critic algorithms,
the actor selects the action to take, while the critic assesses
how good the selection was. These methods are also classified as
policy gradients since the actor uses gradient ascent to update the
parameters of a parametrized function, the policy πθ (s, a) = P[a |
s, θ], that maps states to action. In A2C models, the function’s
parameters are updated for maximizing the return as in Eq. (13).

∆θ = α∇θ logπθ (s, a)Aw,v(s, a) (13)

Where (i) ∆θ is the parameters update; (ii) α is a step-size
parameter, (iii) ∇θ logπθ (s, a) is the score function that shows
the direction in which the gradient moves (i.e., the actor); and
(iv) Aw,v(s, a) = Qw(s, a) − Vv(s) is the advantage function that
indicates how good it is to take a specific action in a state,
the action-value function Qw(s, a), compared to the overall state
value, the value function Vv(s) (i.e., the critic). These two new
functions are also parametrized with parameters set v, w. In prac-
tice, the action-value function Qw(s, a) can be computed using
the return (our case) or Temporal Difference (TD) Learning. The
899
Fig. 7. Two-headed FeedForward Neural Network.

Table 4
Two-headed FeedForward Neural Network’s hyperparameters.
Hyperparameter Value

Input size 12 (state space)
Output size 3+1 (action space + V (s))
Hidden layers x1 shared, x1 independent
Neurons 128, 64
Activation function ReLU, Softmax

remaining parameters Vv(s) are updated by minimizing the mean
squared error of Av(s, a).

DRL agents utilize Deep Neural Networks (DNNs) as the
parametrized function. DL models work better with non-linear
high-dimensional spaces than regular Machine Learning (ML)
models [16]. In A2C models, the DNN receives the state and
outputs the probability distribution of actions from which a
single action is sampled. This procedure enhances exploration.
The devised DNN is a two-headed FNN with parameters θ (Fig. 7).
This architecture outputs the probability distribution of actions
π (s | a) and the critic’s value function V (s). In practice, both
π (s | a) and V (s) can be obtained from the same DNN. The
two outputs also share the first layers in which the gradient is
propagated jointly. Although this method might seem unusual,
it was successful in renowned RL projects such as AlphaGo [59].
Table 4 shows the two-headed FNN’s hyperparameters.

The loss function L is comprised of both the policy loss Lpolicy
and value (or advantage) loss Lvalue. The policy loss is the A2C up-
date term (Eq. (13)), and the value loss is the mean squared error
of the advantage function. In practice, an additional entropy term
Lentropy, which enhances exploration, is also added. The entropy
loss is computed for the probability distribution of the actions,
π (At | st , θπ ). This term penalizes unbalanced distributions to
avoid always selecting the same actions. A constant β is applied
to balance this term that should not dominate over the other
losses. Eq. (14) shows the final loss term, and Eq. (15) describes it
for timestep t . Note that the policy and entropy losses should be
maximized while the value loss should be minimized. Thus, the
signs of the first two loss terms are adjusted since the selected
DL framework minimizes losses. This loss is computed for each
timestep and then accumulated during a trajectory. Finally, with
a learning rate α equal to 0.001, the optimizer Adam updates
the parameters using the accumulated mean loss for the entire
trajectory (Eq. (16)).

L = Lpolicy +Lentropy +Lvalue (14)

minLt = − log(π (at | st , θπ )) · (Rt − V (st ))
− β · π (At | st , θπ ) · log(π (At | st , θπ ))

+ 0.5 · (Rt − V (st ))2
(15)

∆θπ = α∇θπ L̄ (16)
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.4. Problem complexity

Even though DL-based solutions such as DRL have shown
romising results in a wide range of applications, they do not
uarantee global convergence and tend to be time-consuming
nd computationally expensive. Therefore, they usually need
areful tuning of both problem and algorithm parameters (often
alled hyperparameters) to yield satisfactory results. In our case,
e focus on a few key elements to reduce the complexity of our
etting to facilitate fitting the DRL model.
First and foremost, we consider the MDP formulation. Explor-

ng a large state space can potentially slow down the training
rocess due to the curse of dimensionality. So, although the
imulator Mercury offers other information that can be mod-
led within the states, such as delays, we prefer to utilize just
nergy-related features. Something similar happens with the ac-
ion space. It can add unnecessary overhead to the problem. We
ave devised it as efficiently and straightforward as possible by
apping the actions to the EDCs. Reward schemes vary widely,

rom sparse values at the end of episodes to continuous values
ased on several variables. We found out that the quickest and
ost stable way for the algorithm to converge to good results is to
implify the reward function as much as possible. Consequently,
e use the most meaningful metric to our problem: the total
nergy consumption of the scenario as the reward.
Then, it is also important to take into account the DRL al-

orithm selection based on our requirements. The chosen algo-
ithm (i.e., A2C) belongs to the actor–critic family. These models
ombine both policy-based and value-based methods. In DRL
iterature, they often antagonize with Q-learning as both are the
oundation of the most advanced algorithms in the field, such
s Proximal Policy Optimization (PPO) or Soft Actor–Critic (SAC).
here is a trade-off between the two approaches. Among many
spects, the former has better convergence properties, while the
atter is more sample-efficient [60]. This work utilizes actor–
ritic algorithms for several reasons. First, the simulator Mer-
ury produces cheap data samples, so being sample-efficient is
ess of a concern. Second, the improved stability helps to find
obust solutions easily, which is a common pitfall in DRL mod-
ls. Third, the implementation is more straightforward than Q-
earning (e.g., it does not require a replay buffer), helping avoid
otential code-related issues.
Last but not least, the DNN-based policy runs into the same

ssues as other DL solutions. Specifically, bigger networks can
esult in better performance at the expense of slower training and
nference times. The selected architecture aims to reduce both
he simulator’s speed performance and the model convergence as
uch as possible. Hence, it is relatively small without sacrificing
erformance. In our experiments, larger neural networks did not
ield noticeable improvements.
On the other hand, analyzing the time complexity is rather

nfeasible due to the mentioned convergence properties of DL-
ased models. However, our problem could at least be categorized
s an online bin packing problem [61], which is NP-hard. In our
nvironment, the GPUs hosted by the EDCs would be the bins
r containers. Furthermore, the sessions from the vehicles would
e the items. These items have to be distributed to fit into the
ontainers to minimize, in our case, the energy consumption.
ecent works [62,63] suggest that DRL solutions, such as the
ne proposed in this work, improve the performance of existing
ethods based on heuristics in online bin packing problems.

.5. Training procedure

After formulating the problem and the A2C agent, the next
art is to devise the training procedure to fit the two-headed
900
Table 5
Model’s training hyperparameters.
Hyperparameter Value

Feature scaling Fixed standardization
Parallel simulations 3
Discount factor γ 0.99
Return & Reward Standardization
Loss L Equation Eq. (14) & Eq. (15)
Entropy term β 0.001
Optimizer Adam
Learning rate α 0.001
Batch size Sum of trajectory lengths
Total episodes Meeting convergence criterion
Convergence criterion Max reward or train time

FNN’s parameters and achieve the best results (i.e., the highest
returns). Algorithm 1 summarized this process. The first element
to consider is feature scaling. It has a notable impact on speed
convergence in DL models. Since each simulation results in a
different data distribution, our feature scaling strategy utilizes
fixed scaling parameters to perform standardization. So, before
training the A2C model, a first simulation is run to obtain the
scaling parameters, the mean µ and variance σ , used during the
entire training process for standardizing the DNN input (i.e., the
state).

After obtaining the scaling parameters, the DNN’s weights and
biases are initialized randomly. Then, several parallel simulation
instances are launched. This method reduces the variance found
in the model. The number of parallel simulations was set to
three since higher values did not show significant improvements.
Finally, the DNN model is broadcasted to these simulations. The
trajectory (the sequence of states, actions, and rewards in each
timestep) is stored for later use in each simulation.

Once all simulations are over, the return of each timestep of
each trajectory is computed (Eq. (12)). The discount factor γ is
set to 0.99 to give similar importance to immediate and future re-
wards. This way of computing the return is usually enough, but its
standardization for each trajectory can speed up the convergence.
It might also mess up the training procedure, but our experiments
showed that it was beneficial. The reward is also standardized.
Without this procedure, the return is biased towards the end
of the trajectory due to the rewards being inherently negative
(Fig. 8).

After obtaining the returns, the losses are computed and the
parameters updated as explained in Eqs. (15) and (16). The pro-
cess from the simulation launching to the parameter updating
constitutes an episode. Episodes are repeated until the conver-
gence criterion is met. This criterion is either achieving the max-
imum reward over several consecutive episodes or finishing pre-
defined training times to avoid excessively long procedures. Ta-
ble 5 shows a summary of the final hyperparameters. Our devised
model is model-free, on-policy, online, and an actor–critic within
the RL taxonomy. Several elements such as rewards, returns, loss
terms, and probability distributions were monitored to evaluate
the whole process properly during the training. Fig. 9 illustrates
some of these monitored elements.

5. Results

So far, this paper has presented models for the elements
that comprise the devised EC scenario. From these models, three
different scenarios are proposed for their energy optimization.
Firstly, an air-based scenario that only includes air-cooled EDCs.
This configuration corresponds to the current state of deploy-
ments of EC infrastructure. Then, a heterogeneous scenario in
which the two types of EDC, air-cooled and two-phase
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Fig. 8. Return without (center) and with (right) prior reward (left) standardization.
Fig. 9. Some monitored elements from a sample training procedure: probability distribution of actions over consecutive simulation timesteps (left), mean reward
(center) and loss (right) over episodes.
Algorithm 1 A2C model training procedure
Preliminary simulation to obtain feature scaling parameters
µ, σ
Initialize DNN’s parameters θπ randomly
while maximum reward or training time not reached do

Launch N parallel simulations for a preset time
Broadcast DNN to parallel simulations
while parallel simulations running do

for parallel simulation, timestep t do
Collect states st , actions at , and rewards rt

end for
end while
Initialize loss: L ← 0
for simulation’s trajectory T do ▷ T = {t0, t1 . . . , tT }

Standardize rewards rT
for timestep t do

Compute return: Rt =
∑T−1

t ′=t
γ t
′
−t rt ′

end for
Standardize returns RT
for timestep, t do

Compute loss: Lt = Lp,t + Lv,t + LH,t
Lp,t = −log(π (at | st , θπ )) · (Rt − V (st )) ▷ at ∈ At

Lv,t = +0.5 · (Rt − V (st ))2
LH,t = −β · π (At | st , θπ ) · log(π (At | st , θπ ))
L ← L +Lt

end for
end for
Update DNN’s parameters: θπ ← θπ + α∇θπ L̄

end while

immersion-cooled, share the stage, showing the latter’s grad-
ual adoption. Finally, a two-phase immersion-based scenario
901
in the same fashion as the first scenario but using two-phase
immersion-cooled EDCs. This last scenario illustrates the final
and complete adoption of immersion-cooled solutions in the
future. Moreover, we have carried out several hypothesis tests
to evaluate the robustness of our solution and results. Before
presenting them, we introduce the simulation configuration and
evaluation criteria for reproducibility and previous works that
serve as the baseline for comparing our model.

5.1. Simulation configuration

The configuration of the EC network’s elements, presented in
Sections 3 and 4 , is based on previous publications [51], which

also aimed for realistic simulation of EC scenarios. In short, the
location of the scenario is in the San Franciso Bay Area since UE
(i.e., the vehicles) mobility traces are from taxis circulating in this
area. The number of vehicles is fixed at 50 to avoid increasing
training times excessively while still offering appealing layouts.
Aside from UE, there exist three EDCs and ten APs in the scenario.
Their location is the same as in the cited works [51]. The number
of PUs (i.e., the GPUs) per EDC varies amongst 5, 10, and 15 to
analyze how the size affects energy efficiency.

Each PU within each EDC processes up to 4 (immersion-
cooled) or 5 (air-cooled) parallel sessions, which corresponds
with the number of parallel sessions used for training their
models. The models are different due to some issues related to
the hardware and DL platform. Bear in mind that more paral-
lel sessions do not translate into better performance since the
processing speed is inversely proportional to this number [55].
This parameter is configured via the PU utilization factor (25%
for immersion-based and 20% for air-based). In scenarios with
both EDCs, the utilization factor is set to 25% to compare them
better. The other PU parameters, the main and memory clock
frequencies, are set to their maximum value in each GPU to offer
their best performance. Once the resource allocation manager
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Table 6
Configuration of simulation parameters.
Parameter Value Parameter Value

Scenario Location San Francisco Bay Area User Equipment 50 vehicles
Edge Data Centers 3 Access Points 10
EDCs & APs location See work [51] Processing Units 5,10,15 GPUs
Dispatch strategy Maximum Hot Standby 2 GPUs
GPU main clock freqmax GPU memory clock freqmax
Utilization (immersion) 25% Utilization (air) 20%
Utilization (both) 25% Other parameters Default [64]
Mercury version Lite Simulation time 180 s
has sent a session to an EDC, it is allocated using the dispatch
strategy Maximum, which puts new sessions in the GPU with
the highest utilization that can still host a session. This strategy
yielded the best results energy-wise in previous works [51,55].
In addition to this strategy, there are always two GPUs in hot
standby (i.e., switched on but not hosting sessions) to improve
the users’ perceived delay.

This work employs the version lite of Mercury, which con-
ributed to a massive reduction in training time. The simulation
ime is set to 180 s, enabling the computation of 30 episodes
n 45 min on average. Table 6 lists the configuration of the
arameters above. The parameters of Mercury not mentioned in
his Section are set to default values [64].

.2. Baseline and evaluation criteria

As explained in Section 2, most works do not picture their
lgorithms as a holistic solution to the energy problem in high-
erformance EC scenarios. For instance, cooling consumption, a
ey energy factor in this technology, is often overlooked. More-
ver, the focus is usually on theoretical formulations of the IT
onsumption, unlike our empirical GPU models, which are based
n real-world workloads. For these reasons, we compare our DRL
lgorithm to the papers that have addressed the EC problem with
clear energy-oriented use case, including location awareness
nd high-performance IT consumption modeling [51–53].
Regarding the baseline, their authors propose a heuristic algo-

ithm in which they measure the distance between the drivers
nd the EDCs. In short, it assigns the sessions conveyed through
he APs to the closest EDC possible. While this approach can
otentially reduce the perceived delay by the users, the delay
s already extremely low in EC layouts. Moreover, they lack a
roactive approach for the energy contribution in their heuristics.
t is worth noting that they do analyze the energy impact thor-
ughly as a consequence of their location-aware model. In the EC
cenarios, we assess how much energy can be saved using our
RL agent.
As for the evaluation criteria, the main evaluation metric is

he total power consumption in the scenario P , which com-
rises the sum of the IT power consumption PIT and cooling
ower consumption Pcooling of the tree EDCs PEDCs (Eq. (17)). The
ean P̄ and peak Pp values are computed to evaluate the results.
oreover, the PUE is also used. Its purpose is the assessment
f the cooling system’s efficiency. It is computed as the total
ower consumption P divided by the IT power consumption PIT
Eq. (18)). Better values are closer to one. Note that the PUE does
ot reflect the overall energy optimization in the scenario but
he cooling system’s efficiency. So, for instance, if the IT power
onsumption is optimally reduced while maintaining the same
ooling consumption, the PUE would worsen. The metric helps to
ssess whether our cooling consumption models behave as the
OA suggests. The mean value ¯PUE is employed for this metric.

[W ] = PEDCs = PIT + Pcooling (17)

UE =
P
PIT
=

PIT + Pcooling
PIT

(18)
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Table 7
Air-based scenario results.
Strategy GPUs P̄ [kW ] [%] Pp [kW ] [%] ¯PUE [%]

Baseline 5 1.86
−13.12 1.94

−13.34 1.31 -Energy 1.61 1.68 1.31

Baseline 10 2.23
−15.47 2.40

−20.41 1.31 -Energy 1.88 1.91 1.31

Baseline 15 2.22
−6.19 2.40

−10.77 1.31 -Energy 2.09 2.14 1.31

5.3. Simulation results

All experiments were executed using an ASUS TUF Gaming
FX505GD laptop with an Intel-Core i7-8750H CPU 2,2 GHz pro-
cessor and a 16 GB 2667 MHz DDR4 memory. The DRL agent
(PyTorch) and the GPU models (TensorFlow) were implemented
in the CPU. Most training times ranged from 30 minutes to
2 hours.

5.3.1. Air-based scenario
The air-based scenario features three air-cooled EDCs. Their

energy model, which was devised in Section 3, has a unique
parameter that needs to be configured. The air cooling system
model includes one control variable, the equipment inlet tem-
perature Tinlet (Eq. (3)), which usually varies between 16 ◦C and
27 ◦C [65]. The final value was set to 20 ◦C, yielding a PUE of
1.31. The model is reasonably optimistic since the average PUE
in today’s data centers is around 1.58, with frontrunners such
as Google and Facebook achieving values lesser than 1.1 [66]. As
stated in the previous Section, the parameter GPUs per EDC, or
just GPUs, is tested for three different values to assess how the
EDC dimensioning contributes to the scenario’s total energy con-
sumption. Table 7 lists the results. It shows the mean P̄ and peak
Pp power consumption, and the mean PUE ¯PUE for the baseline
and our energy-aware model. Each pair’s relative improvement is
also provided to compare both strategies seamlessly.

All configurations yielded noticeable energy savings, varying
from 6.19% to 15.47% in mean power consumption. The best
results are found in the medium-sized EDCs closely followed by
the small-sized ones. This slight difference in the outcome arises
from their size since the smaller EDCs have less room for im-
provement. The scenario with the most equipped EDCs presents
the most moderate results. This fact is related to the GPUs in
hot standby, which usually remains completely unused while
consuming energy as larger EDCs are less prone to saturation.
Thus, this scenario hardly leverages the GPUs in hot standby of
underutilized EDCs.

On the other hand, the PUE does not fluctuate since the air
cooling model is linearly proportional to the IT demand (Eq. (3)).
Fig. 10(a) illustrates the power consumption in the best scenario,
ten GPUs per EDC, over the simulation’s duration. During almost
the entire simulation, our energy-aware model consumed less
energy than the baseline. Closer values are found during the
simulation’s start.
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Strategy GPUs P̄ [kW ] [%] Pp [kW ] [%] ¯PUE [%]

Baseline 5 1.33
−4.87 1.39

−0.25 1.02 +0.24Energy 1.26 1.39 1.03

Baseline 10 1.64
−6.60 1.79

−7.54 1.05 +1.61Energy 1.53 1.65 1.06

Baseline 15 1.72
−0.56 1.88

−2.13 1.10
−1.36Energy 1.72 1.84 1.09

5.3.2. Two-phase immersion-based scenario
As with the air-based scenario, there exist some unique pa-

ameters. The cooling model includes one control variable, the
emperature difference ∆T (Eq. (7)). As stated in Section 3, the
model is based on the pump installed in our full-size EDC. This
EDC is designed for workloads up to 50 kW. We are simulating
scenarios with a maximum of 15 GPUs, each with a peak power
consumption of around 100 W. So, while the real-world system
would need a ∆T of a few degrees, our simulated EDC needs
ess than 1 ◦C to work in the optimal range (Fig. 6). Besides
his parameter, a power reduction factor γ is also applied to the
model for adjusting its output to our small-scale scenario. The
final cooling power consumption employed in the simulations
P sim
cooling is computed as follows:

P sim
cooling [W ] = γ · Pcooling =

GPUs · 100W
50, 000W

· Pcooling (19)

As in the previous scenario, our energy-aware model is tested
against the baseline using three different configurations of GPUs
per EDC. Table 8 lists the results for the two-phase immersion-
based scenarios. The improvement obtained relative to the base-
line is somewhat less than in the air-cooled case, showing energy
savings between 0.56% and 8.16%. It was expected for several
reasons. On the one hand, the immersion-cooled GPU model
behaves more linearly than the air-cooled one. On the other hand,
this GPU employs a higher utilization factor. Thus, the EDCs have
less capacity and possible combinations to allocate the sessions
and improve the situation. These two facts diminish potential
optimization savings.

Size-wise, the results follow the same trend as the air-based
case. The medium-sized EDCs yield the best results, with the
small-sized ones close behind. The largest EDCs show almost
no improvement. The reasons are the same as in the air-based
scenario (large EDCs are likely never to reach their limit, so
they usually have these GPUs available), but with the addition
of the immersion-cooled GPU model (less potential energy im-
provements). Finally, the cooling model’s configuration proved
successful as the PUE fluctuates between 1.02 to 1.09, close
enough to what the Literature suggests for these systems and
much more efficient than air-cooled ones nowadays.

Figs. 10(c) and 10(d) depict the model’s performance for the
scenario with the highest savings using the mean power con-
sumption and PUE, respectively. Looking at the power consump-
tion, it is clear that the difference is much narrower than in
the air-based scenario during most of the simulation. Our re-
source allocation manager obtains better results during most of
the simulation, with rather stable and constant power consump-
tion, unlike the baseline. In contrast, the baseline strategy scores
better PUE values than ours by a small margin. This outcome
strengthens the idea described in Section 5.2 that a better PUE
does not mean better energy efficiency, but rather an IT energy
optimization of the scenario whose contribution is much more
significant than the cooling, hurting the PUE final value.

Besides strategy comparisons, the most notable finding is
that immersion-based scenarios consume significantly less en-
ergy than air-based ones, thanks to both IT and cooling systems
903
Table 9
Heterogeneous scenario results.
Strategy GPUs P̄ [kW ] [%] Pp [kW ] [%] ¯PUE [%]

Baseline 5 1.80
−7.67 1.86

−0.69 1.24
−1.84Energy 1.67 1.85 1.22

Baseline 10 2.31
−23.75 2.51

−26.30 1.27
−10.26Energy 1.77 1.85 1.14

Baseline 15 2.34
−22.61 2.53

−21.89 1.29
−14.93Energy 1.81 1.98 1.10

being less power-greedy. In the evaluated simulations, the mean
energy reduction found with two-phase immersion-cooled EDCs
compared to air-cooled ones is 22.6%, with a maximum of 28.5%.
Fig. 10(b) depicts the air-based and immersion-based scenario
comparison with the highest savings corresponding to the 5 GPUs
per EDC configuration and the baseline.

5.3.3. Heterogeneous scenario
Finally, this paper presents a heterogeneous scenario that

leverages both EDC types, mimicking the gradual adoption of
two-phase immersion-cooled EDC in EC deployments. The layout
features two air-cooled EDCs and one immersion-cooled EDC.
If our models behave as expected, the DRL agent will prefer
to allocate sessions in the immersion-cooled EDC as it clearly
consumes less energy.

Table 9 illustrates the results. These scenarios show the high-
est energy savings with up to 23.75% reduction compared to the
baseline. However, this time, the five-GPUs EDCs are the ones
with rather modest results. The reason behind this is straight-
forward. As expected, the energy-aware model tries to allocate
as many sessions as possible in the immersion-cooled EDC. This
behavior hurts the EDCs with limited resources since there is
only one immersion-cooled. On the other hand, the largest EDCs
are almost as good as the medium-sized EDCs, lagging behind
as their use of hot standby GPUs is less efficient, like in other
scenarios. Fig. 10(e) shows the results for the best scenario. The
difference in power consumption between both strategies is sec-
ond to none, reducing more than 500 W on average. Since this
scenario includes ten GPUs per EDC, the utilization (Fig. 10(f))
depicts how the immersion-cooled EDC fills up completely, and
one of the other two air-cooled EDCs takes the few remaining
sessions during the interval with the highest demand.

From the analysis of the heterogeneous scenarios, some con-
clusions are inferred. The most energy-efficient EDC was the
immersion-cooled one, which yielded the most substantial en-
ergy savings. Perhaps, the most significant finding is that het-
erogeneous scenarios, which are more diverse with higher com-
plexity, bring out the best of algorithms such as DRL models.
The results have been notably better in contrast to more simple
scenarios. They pave the way to formulate even more complex
layouts where DRL-based solutions might make the difference
and help obtain considerable energy savings in real EC setups.
Aside from the three types of scenarios, the dimensioning of EDCs
through their resources, the GPUs, proved vital to optimize future
deployments. As seen in these results, the medium-sized config-
urations (ten GPUs per EDC) harness much better the additional
hot standby GPUs than the small-sized and large-sized ones (five
and fifteen GPUs each).

5.3.4. Statistical hypothesis testing
In addition to the previously discussed results, we have car-

ried out statistical tests to prove the benefits of our solution
compared to the baseline in a more rigorous manner. To this
end, we first obtained the mean power consumption P̄ (our
optimization metric) of 10 simulations per evaluated scenario
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Fig. 10. Results of the three evaluated scenarios: (a) strategy comparison for the best air-based scenario by power consumption; (b) EDC type comparison for the
est configuration by power consumption; (c) strategy comparison for the best immersion-based scenario by power consumption; (d) strategy comparison for the
est immersion-based scenario by PUE; (e) strategy comparison for the best heterogeneous scenario by power consumption; and (f) strategy comparison for the best
eterogeneous scenario by utilization.
sing our energy model, 90 simulations overall. Fig. 11 depicts the
utcome. We can infer that the variation in energy consumption
mong different simulations in the same scenario is definitely
ow. Thus, suggesting that our DRL agent provides consistent per-
ormance. The two relevant observations are: (i) the noticeable
nergy savings using immersion-based scenarios compared to air-
ased ones, (ii) and the potential of optimizing heterogeneous
cenarios since increasing the number of GPUs does not impact
he power consumption that much.

Finally, we make use of statistical hypothesis testing and the
0 simulations to compare our model against the baseline. Af-
er analyzing several options, we found that the paired sample
-test [67] was the most suitable for our case. T-tests are well-
nown and robust parametric tests that are used today in many
ields. In fact, the evidence shows that in DRL, they are the best
ption even when the assumptions are partially met [68]. These
ssumptions are (i) independent observations, (ii) approximately
ormally distributed data, (iii) no outliers, and (iv) continuous
ata. In our case, we meet the requirements, but with a small
ample size, it is better to utilize a robust test such as this one
o guarantee its validity. Another critical factor is the number of
ariables. Since there are only two (our model’s and the baseline’s
esults), the paired sample t-test becomes a perfect fit for eval-
ating our research. Accordingly, two hypotheses are considered
nd defined as follows:
904
• The null hypothesis (H0) suggests that both the model and
the baseline are similar.
• The alternative hypothesis (H1) tells us that the two solu-

tions are different.

To further prove the viability of the A2C agent, we use dif-
ferent criteria to evaluate it. We calculate the median, mean,
maximum, and minimum values of the ten simulations for each of
the nine scenarios using the mean power consumption P̄ , our op-
timization metric. Table 10 lists the outcome of the test. It shows
the sample size (N), the sample mean and standard deviation (SD)
of the pair-wise difference, the degrees of freedom (d.f.), and the
obtained t-statistic and p-value, using the four different criteria.
To determine the statistical significance, the cut-off value is set
to 0.05, a typical significance level utilized in Academia. From
worst (maximum P̄) to best (minimum P̄), all four criteria yield
p-values far lower than 0.05. Therefore, we can reject the null
hypothesis H0 and conclude that the mean power consumption
of our DRL model compared to the baseline is significantly lower,
as suggested by the evidence.

6. Conclusions and future directions

This paper presents novel research for the energy optimization
of realistic EC scenarios utilizing two-phase immersion cooling
systems and data-driven resource allocation via DRL. As proof
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tatistical comparison between our DRL agent and the baseline.
Metric Criteria N Mean SD d.f. t-statistic p-value p > 0.05

P̄ [W ]

Mean 9 237.01 184.54 8 3.6325 0.0067 ✗

Median 9 236.48 187.06 8 3.5755 0.0072 ✗

Maximum 9 220.41 184.30 8 3.3828 0.0096 ✗

Minimum 9 252.74 179.70 8 3.9780 0.0041 ✗

of concept, multiple EC scenarios have been modeled, simulated,
and optimized, harnessing these two methods. The scenarios
feature actual traces from taxis around San Francisco and employ
a DL-based ADAS application well suited for EC workloads. In the
scenario, these workloads are offloaded to EDCs. We also used
this application to develop energy models of two types of EDC
prototypes that include GPUs for the IT and either air or two-
phase immersion cooling systems. The two-phase immersion-
cooled prototype’s IT energy model achieved an NRMSD of 3.15%
and an R2 of 97.97%. Its cooling energy model is theoretically
evised using data from a real heat exchanger mechanism.
On the other hand, a resource allocation manager is responsi-

le for assigning the workloads to the EDCs. It is a DRL-based A2C
gent with the goal of minimizing the EDCs’ energy consump-
ion. A two-headed FNN is employed for its architecture, which
as fine-tuned considering both speed and performance. Three
ain scenarios were evaluated: air-based, immersion-based, and
eterogeneous, which features both air-cooled and immersion-
ooled EDCs. Firstly, the air-cooled scenario yielded considerable
nergy savings compared with the baseline, 12% on average. Then,
mmersion-cooled EDCs obtained an average energy reduction
f 22.8% in contrast to air-cooled ones, and immersion-based
cenarios obtained an additional 4% below the baseline. Finally,
he heterogeneous scenario presents maximum savings of 23.8%
n comparison to the baseline.

Numerous future lines can be drawn from here, such as (i)
ulti-objective optimization that involves delays, energy con-
umption, and prices; (ii) more complex and realistic scenar-
os with smart-grid, renewable energies, and size limitations;
iii) multiple applications based on different fields like health
r gaming; (iv) thermal-aware modeling to leverage the maxi-
um potential of two-phase immersion cooling; and (v) new DRL
gents, DL architectures, IT equipment, cooling systems or base-

ines to add further variety to the experiments. Perhaps, the most

905
important conclusion of this research is that the combination
of DRL optimization and two-phase immersion cooling enables
many possibilities to optimize highly complex EC scenarios going
forward. This fact would potentially accelerate the deployment of
EC solutions and, thus, a more scalable, sustainable, and greener
future.
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