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Based on the resonant ion confinement concept, for a Deuteron cloud in a Penning-Malmberg
trap with a specially configured rotating wall, the possibility to build a new kind of fusion reactor is
analysed. It is proved that, for some trap configurations, nuclear fusion reactions will take place in
the center of the trap vessel. In that case, Lawson criterion for an efficient fusion reactor is satisfied.
Moreover, the reactor will have a compact design and, since it does not require a large facility for
its implementation, we call this device as a Fusion Cell.
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I. INTRODUCTION

For an efficient fusion reactor the pressure p of the
confined plasma times the energy confinement time
τE should be greater than a given amount

pτE > L. (1)

A criterium due to Lawson (Ref. [1]). For Deuterium
- Deuterium reactions this value is of the order of one
hundred atm× s. As a matter of fact, in the case of the
main sequence stars it is gravity what provides the con-
finement conditions to effectively satisfy such criterium.
Thus, given that Deuterium is an stable and abundant
Hydrogen isotope on Earth, being able to artificially con-
fine these nuclei in a controlled and sustainable way, also
satisfying the fusion conditions, and, thereby, taking ad-
vantage of the energy of the stars, is the ”raison d’être”
of nuclear fusion research. Notwithstanding with that,
instead of the instance of pure Deuterium, a much more
energetically favored reaction possibility comes from the
case of the fusion of Deuterium and Tritium and, in that
case, the magnetic confinement of neutral plasmas has
been thought as the more promising concept to build a
fusion reactor. In Tokamaks, the magnetic field confines
the particles and energy long enough for ignition to oc-
cur and it is expected that such a reactor will generate
enough energy to achieve Q > 10, which will probably
be shown through the ITER experiment in the near fu-
ture,(see Ref. [2], also Ref. [3]). Those expectations over-
come the challenges inherent to the Tokamak concept,
namely the possibility of suffering disruptions, the exis-
tence of edge localised modes (ELMs) and the intrinsic
pulsed working, on top of the possible impurity accumu-
lation, (as from Ref. [4]). Turbulence will be also playing
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a major role degrading the Tokamak plasma confinement.
These problems make it necessary to explore other pos-
sible magnetic confinement fusion concepts like the stel-
larator one (see e.g. Ref. [5]), characterised by enabling
a continuous working and by the absence of large ELMs
and disruptions, since there plasmas are almost current-
less. Stellarator confinement is one generation after the
tokamak one, due to the fact that they have to reduce
their neoclassical transport by optimization, as well as to
solve the confinement of fast particles and to demonstrate
power exhaust by a suitable divertor concept. Therefore,
it is still necessary to overcome difficulties in both con-
cepts to make it economically feasible for the production
of electricity by fusion. Other topic to discuss in the fu-
ture would be the size of the reactors, since all the scal-
ings show an improvement of confinement with the size
of the device (see e.g. Ref. [6] and references therein).

A possible alternative and expectedly much less costly
method to achieve nuclear fusion is described in this arti-
cle. The research on this concept can be considered as a
risk mitigation action in case that the main stream lines
do not reach the expected results, and opens the possi-
bility to build small size fusion reactors. It is based on
the concept of Resonant Ion Confinement ( see Ref. [7],
that can happen inside a cylindrical Penning-Malmberg
ion trap). In this device ions are confined by applying an
electric potential difference,V0, together with a magnetic
axial field B. The ion trap, additionally, has a quadrupole
electric field of a frequency, ω, such that it allows the
Deuterium nuclei to rotate also with that same angular
velocity. In this system, a fraction of ions close to the
centre of the device performs trajectories that will bring
them close enough to produce fusion reactions by tun-
nelling. The confined ion system takes the shape of a
highly flattened spheroid. Although these characteristics
are common to any Penning-Malmberg system, there is
a very precise set of values for the trap parameters that
determine the intensity of the quadrupole field for which
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resonant, coalescing paths, arise among all the Deuterium
ion trajectories, and, in this way, nuclear fusion reac-
tions will take place. Thus, the precise dependence of
this quadrupole electric field as a function of the electric
field potential, V0, and of the magnetic field intensity,
B, as well as the radius of the trap cylinder, R0, will de-
termine the resonance conditions required for the system
to produce a finite number of fusion reactions. Finally,
the pressure and confinement time necessary for ignition
in the center of the ionic trap will be reached only for
special configurations of the confinement system param-
eters. This summarizes the features of a new candidate
for compact nuclear fusion reactor: a Fusion Cell.

The article is organised as follows. First we sum-
marize the dynamic properties of a charged plasma of
Deuterons confined in a resonant configured Penning-
Malmberg trap (the more technically involved features of
that can be found extensively in the Appendix). Next we
review the power balance of the fusion reactions in this
context. Thereafter, the thermodynamic constrains that
the self-sustained reactor shall satisfy is described and,
following this, the actually attainable electric power, for a
realistic implementation, is estimated. We end the article
with some conclusions about the technical possibilities of
the fusion cell concept.

II. RESONANT ION CONFINEMENT.

Let us consider N Deuteron nuclei of mass m confined
in a cylindrical Penning-Malmberg trap of radius R0; we
will assume perfect thermodynamic equilibrium. Let us
denote the applied electrostatic potential as V0 and the
axial magnetic intensity as B. A rotating wall electric
quadrupolar field of intensity λ = 1/2+δ and angular fre-
quency ω is then added which prompts the plasma cloud
to rotate collectively with the same rotating wall angular
frequency ω. The latter is the guiding orbit magnetron
frequency of the ion cloud. The charged plasma remains
confined in the central plane of the trap and the form of
the confined ion cloud is a spheroid of semi-major axis
RC and semi-minor axis z. Using the fact that ions should
be in equilibrium inside the confined cloud, it is easy to
see that the electric axial oscillations of ions should be
related to the volume density number,n, of this cloud as
ωz = (ne2/mε0)1/2. Moreover, the oscillator axial fre-
quency also depends on the electric potential V0 and the
radius of the trap cylinder, R0, as ωz = (2/R0)

√
eV0/m. In

addition, ought to the applied axial magnetic field B, the
ions inside the confined spheroid have an internal fast
cyclotron oscillation whose frequency is defined in terms
of Ω = eB/m. Due to the diamagnetic behaviour of
charge currents inside the plasma cloud, the achievable
cyclotron frequency of the Deuterons is actually smaller:
Ω′ = Ω − 2ω, which this is called the vortex frequency.
On the other hand, dynamic equilibrium of the plasma
imposes that ω(Ω − ω) → ω2

z/2. This means that there
exists a key parameter ϑ to define confinement quality of
the Penning-Malmberg trap such that ω = Ω sin2 ϑ

2
and

ωz = Ω sinϑ/
√

2. When ωz � Ω the aspect ratio satis-
fies the condition ` = z/RC � 1 (see Ref. [10]). Ion

confinement is expected to be perfectly stable free of
the magnetohydrodynamic instabilities that happen in
magnetic neutral plasma confinement. This is the con-
finement theorem of charged plasmas. In special situ-
ations, there are other kind of exact periodic solutions
of the equations of motion (see Appendix). These so-
lutions represent the trajectories of two correlated con-
fined nuclei that follow coalescing paths to the center of
the trap, where they collide, and so D-D fusion reactions
will happen. Yet, this effect will hold only with a given
probability, since most of the ions in the cloud will still
follow circular magnetron guiding orbits. Thus, the cor-
relation only occurs if the special condition between the
δ parameter and the ϑ trap parameter holds, which is
the ion resonant confinement condition. To see this, re-
call that, in the rotating center of mass frame of every
two ions, the trap field interaction Lagrangian is given
in terms of the relative distance % between the correlated
nuclei as L = 1

2
µ%̇2 − U(%, t), the potential energy being

U(%, t) = 1
2
µω2

z%
2(λ cos 2ωt− 1

2
), where µ = m/2 stands for

the reduced mass of the ions. It is seen that the fast cy-
clotron motion frequency does not appear in U(%, t). The
solution of the equation of motion of the two-correlated-
nuclei complex is given in terms of Mathieu functions.
If RC is the maximum radius of the orbit, denoting,

χ = cot2(ϑ/2)→ eB2R2
0

4µV0
− 2 (for ϑ� 1 ), one gets,

% = 2RC
q0
Ce[−χ,−λχ, ωt ], (2)

where q0 is a normalization constant. In general,
these orbits are exponentially unstable, yet numer-
ical calculations show that there exists a special,
resonant,π/ω periodic orbit whenever the quadrupolar
field strength parameter δ takes the value, (see Appendix)

δ ≡ λ− 1

2
→ 1√

2χ
. (3)

The minimum distance between the nuclei in these res-
onant orbits will eventually be given by the following
numerical solution

%0 = 2RCκ(χ), with κ(χ) ' exp{1/2− 1.35
√
χ}, (4)

which can reach arbitrarily small values at any tempera-
ture of the confined plasma in the limit ϑ→ 0. Moreover,
the kinetic energy per Deuteron in this case becomes
E →W/2 where

W =
e2

4πε0%0
. (5)

Which provides %0(W ). The exact trajectories of two cor-
related ions colliding at the center of the trap vessel is
shown in Fig. 1.

On the other hand, it has been shown in the Appendix
that a charged plasma in thermodynamic equilibrium
at temperature T should behave as a solid rotor in a
Penning-Malmberg trap with a magnetron frequency os-
cillatory stroboscopic rotating wall quadrupolar field.
The plasma global angular velocity ω , coinciding with
that of the individual ions guiding orbits, satisfies the
condition ω =

√
kBT/µR2

C . Then, since ω = Ω/(χ+1), we



3

FIG. 1. A simulation of the correlated trajectories of two ions
when the resonant conditions of the trap are satisfied. The
two deuterons collide at the center of the trap.

get χ+1 = ΩRC
√
kBT/µ which, owing to the dynamic in-

ternal equilibrium of the plasma, it is equivalent to saying
that χ ' eV0/(kBT )R2

C/R
2
0. Finally, using this thermody-

namic constraint and given that the axial degree of free-
dom is thermal, i.e., kBT = 1/2µω2

zz
2
max, we conclude that

the aspect ratio of the confined ion cloud minimal height
spheroid is zmax/RC ' 1/

√
χ, which is an important rela-

tion that will be used later. In the Appendix, it has been
also demonstrated that the probability that two corre-
lated ions follow the resonant orbits is ℘(χ) = 1/χ. Recall
that in the resonant case, all the macroscopic features
of the Deuteron plasma can be written only in terms of
the microscopic parameter W and of the trap confine-
ment value for χ. Then, RC = e2/(8πε0)W−1κ(χ)−1 and
the confined volume of the ion cloud becomes

V → 4
3
π(RC/

√
χ)3 × χ, (6)

which is coincident with the volume of χ ion clump
spheres of radius RC/

√
χ. The density number becomes

n =
ε0B

2

4µ
sin2 ϑ→ 4ω2ε0µχ/e

2

and the total number of confined Deuterons N → V × n.

III. FUSION REACTION POWER BALANCE.

For Deuterium, the natural occurring reactions are

2H +2 H→3 He + n,
2H +2 H→3 H +1 H, (7)

their corresponding fusion energies are Ef1[3He + n] =
3.27 Mev and Ef2[3H +1 H] = 4.04 Mev. Each reaction
takes place with approximately 50% probability. Thus,
together with the necessary Lawson criterium in Eq. 1,
in a self-sustaining energy balanced fusion Deuterium de-
vice the only heating terms shall be that from the kinetic
energy of the confined charged products in Eqs. 7. The
kinetic energy contribution of the neutrons, which cannot
be confined in the trap, must be subtracted from the nu-
clear energy balance, a fraction ηn = En/(Ef1 +Ef2). The
neutron energy escapes directly to heat the reactor walls.
On top of that, other energy losses have to be taken
into account in the power balance analysis, namely the
Bremsstrahlung term due to accelerated charges in the
plasma, as well as that corresponding to ion-ion Coulomb

collisions, or the transport term. Positive power balance
of the deuteron plasma, then, requires

Pf (1− ηn) > PB + PL, (8)

where Pf ≡ JfV is the power due to fusion reactions that
heats the whole plasma volume V, PB is the Bremsstrahlung
term and PL is the power loss caused by transport,
assumed collisional. Again, let E be the energy of
the deuteron nuclei in the resonant orbit (this corre-
lates with the effective temperature of the nuclei in-
side the density clusters) and let n′(χ) be the den-
sity number of the plasma in the resonant clusters,
then the collision frequency is, (see Ref. [9]) ν(χ, E) =

n′(χ)E−3/2 3e4

16π2ε20m
1/2 ln Λ(χ, E). The Coulomb logarithm

is ln Λ(χ, E) = ln
{

12πε
3/2
0 n′(χ)−1/2e−3E3/2

}
. Now, we write

N ′ = ℘(χ)N as the number of resonant nuclei in the den-
sity clusters; then V ′ = κ(χ)V is the volume of the den-
sity clump because only one of the two major axis of the
spheroid is compressed due to the resonant orbits of the
nuclei in it. Then every ion swirls around the center in a
vortex from r = RC to r = %0/2 and, therefore, the effec-
tive volume that affects all the resonant orbits may be ap-
proximated as V ′ = 4/3πRC

{
κ(χ)RC

}
z, which will be the

volume available for fusion reactions in the center of mass
of the resonant complex. Then, n′(χ) = ℘(χ)/κ(χ)n. Now,
from these definitions, the reactor effective power per
unit of volume becomes

J(E , χ) = (1− ηn)Jf (E ;χ)−

−η
{
n′(χ)2αBE

1
2 +

N ′

V
Eν(χ, E)

}
(9)

where the fusion power per unit volume is

Jf (E ;χ) =

{
1
2
Ef1〈σv〉1 + 1

2
Ef2〈σv〉2

}
(E)

n′(χ)2

2
. (10)

Notice that in Eq. (9), we consider the total volume
of the plasma in the collision term, instead of that of
the resonant cluster of ions; the reason is that we con-
sider the most unfavourable case in which the collisional
transport is large enough to drive the local inhomo-
geneities that appear in the resonant zone to the entire
plasma volume. In Eq. (9) η ≈ 1 because, neglecting
the 3H, 1H and 3He concentrations, i.e., those of the
nuclear reaction products, there is only a single particle
species in the confined plasma. For long period work-
ing of the reactor, the concentrations of these species
could not be negligible and should be taken into account.
In Eq. (9), αB = 1.4 10−40 (me/mp)

3/2 [W/m3K−1/2]

and, for E(keV ) < 300, we can make the following an-
alytical approximation for the cross-section of the re-
action: 〈σv〉i = biEβi exp{ciEχi} b1 = 1.198 × 10−18,b2 =

3.5501 × 10−19,β1 = −1.0759, β2 = −0.9462, c1 = −23.511,

c2 = −22.04, χ1 = 0.29221, χ2 = 0.2922. Using these values
in Eq. (9) one sees that the Bremsstrahlung and the ion
collision terms have small effects in the power balance.
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IV. THERMODYNAMIC CONSTRAINTS.

In order for the Cell to be energetically self-sustained,
the generated energy must be greater than the sum of the
emitted heat plus the magnetic back reaction pressure
loss (as required from Brillouin’s theorem). Then, the
actual thermodynamically available power density is

JC = J− Ẇ, (11)

where Ẇ = b2/2µ0ω(χ)/π is the power loss per unit of
volume due to the diamagnetic currents of the confined
ions calculated for the resonance frequency. Recall that
the contribution to the pressure losses is written in terms
of the plasma back reaction magnetic field, namely, b =
−4(µ/e)ω = −2/(1 + χ)B. Now, the energy confinement
time τE may be calculated in a Cell of temperature T and
density number n for the nuclei in the resonance, whose
density number becomes n′(χ) near the ignition point:
τE [Cell] = n′(χ)E/JC. Also, in the Cell, the pressure at
the ignition point becomes p[Cell] = 2/3n′(χ)E . Then,
(see Ref. [9])

pτE [Cell] = 2
3
n′(χ)2E2/(J(χ; E)− Ẇ). (12)

The function pτE [Cell] should have a minimum value for
some χ(ϑ) and E = W/2. This can be seen in Fig. 2 where
Lawson’s minimum is actually reached for ϑ ≤ 0.105, and
W = 30.7 keV.The minimum is obtained for approxi-
mately the same Cell parameters, independently of the
actual temperature of the confined plasma cloud. Thus
pτE [Cell] ≈ 130 atm · s , which is expected to be experi-
mentally achievable. The value of the Coulomb barrier
energy for the Lawson minimum computed for the Cell is
remarkably close to the expected experimental value (see
Ref. ([9]), a fact that supports the Resonant Ion Confine-
ment reactor concept. Now, in order to obtain the actual
power efficiency of the Cell, recall that, since the species
3He2 , 1H1 and 3H1 are positively charged, they will be
retained in the trap but, contrarily to that, the neutrons
will escape from the trap cavity and will be absorbed
by the surrounding walls of the Cell, where a system to
absorb their energy should be installed. Their kinetic
energy might be, then, transformed into heat (with an
efficiency ηh ∼ 1/3 ). This heat can used to produce
electricity by means of high efficient thermoelectric ma-
terials.

Moreover we must also take into account that every
D-D collision takes place by quantum tunnelling the
barrier W. The Gamow-Sommerfeld probability of this
transition needed to undergo the nuclear reaction is
ηf (W ) ∼ exp{−παc

√
2µ/W}, again, the Deuteron reduced

mass is µ = m/2. It gives, for the Lawson minimum
W ' 30.7 keV, ηf ' 1/300. Having this in mind, the fol-
lowing estimate for the electric power of the Cell can be
provided Pf ∼ ηnηhJC×V (W,χ)→ ηnηhJC×{NV ′(W,χ)},
where we have used the fact that the real available volume
of the reactants in the Cell must be calculated consider-
ing that the number of reactions in the total volume of
the Cell should match, in the average, to the sum of all

FIG. 2. Lawson triple product pτE [Cell] for B = 3.73 T as a

function of the Coulomb barrier energy achievable for D-D col-

lisions W in keV and the parameter ϑ = arcsin(
√

2ωz
Ω

). This
minimum exists only for ϑ . 0.105 and W ∼ 30.7 keV.

tunnelling-through-the-barrier collisions. This is given
by the quantity N = ηf (W )×℘(χ)2×N2/2. The following
equation gives the key constraints for the Cell confine-
ment configurations

℘(χ)2N2/2× ηf (W )[κ(χ)V ] = V. (13)

Also, the operative condition

RC =
1

2
%0(W )κ(χ)−1 ≤ 2

eB

√
eV0µ(χ+ 1) = R0, (14)

must be fulfilled. The total thermoelectric power of the
Cell becomes

PCell = Pf − (1− ηh)aT 4[π/ω(χ)]V. (15)

Here, to obtain the realistic model of the Cell, we have
subtracted the black body radiation term (a is the ra-
diation constant). In addition to that, the maximum
variation of the number of Deuterons per unit of time
in the Cell is ṄD = 1

ηn
Pf/〈Ef 〉 and, therefore, the Cell

thermonuclear reaction frequency is νf = ṄD/N . For
the actual Fusion Cell, remember that the Deuteron fuel
will enter the Cell cavity in a pulsed way. These fuel
pulses react in a time of 1/νf , to this point, the fuel
is introduced in the reactor chamber through very high
frequency pulses and the achievable electric power of the
Cell will depend on the ultra high frequency and high
voltage circuit breakers to control the rapid pulsed fuel
refilling of the reactor chamber. Then, if we denote the
frequency of these circuit breakers as νCB , the achiev-
able power of the Cell would be: νCB/νfP[Cell]. A solu-
tion of the Cell constraint in Eq. 13 does exist and is
χ = 477.102, B = 3.73 T, and W = 30.74 keV. The result-
ing maximum achievable electric power of this Cell would
be

PCell ' 4.4 MW

for Deuteron pulses of N = 2.2 × 1010 injected with a
frequency νf ∼ 5.65 GHz when the electric potential is
within the range 5.9 kV < V0 < 8.5 kV.

A solution of Eqs. 13 and 14 is represented in Fig.3 for
the attainable thermoelectric power in Eq. 15; this con-
figuration gets its maximum at V0 ' 6.5 kV for a fuel rate
of ṄD ' 1020 Deuteron/s. The confinement radius of
the ion cloud would be RC ' 91 mm and the trap radius is
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R0 ' 92.56 mm. Of course a realistic facility could reach
several orders of magnitude less electric power because
the actual Cell requires a pulsed refilling of the reactor
cavity and that the resonant configuration would be at-
tainable only adiabatically, i.e., λ→ 1/2 + δ (after Eq. 3)
slowly enough in a time much larger than ν−1

f . This kind
of technological requirements will be the subject of the
experimental research for real fusion facilities based on
the grounds of the resonant ion confinement concept.

Yet, in order to double check that the above esti-
mates are correct, we can do a rapid analysis. As said,
in the resonant cell (all over the time), the number of
possible configurations between two Deuterons, leading
to quantum tunneling reactions, is approximately N ∼
ηf (W )℘(χ)2×N2/2. Since the natural colliding frequency
is Ω/2π, the nuclear reaction rate should be N×Ω/2π, and
the number of emitted neutrons per second is half this
value. Then, roughly, the actual achievable electric power
must be PCell ∼ ηh2.44 MeV× 1

2
N×Ω/2π. For the numbers

above, i.e., B = 3.7 T, N = 2×1010 Deuterons, χ ∼ 477, and
RC ∼ 91 mm (which, for the resonant condition in Eqs.4,
is equivalent to saying that %0 ' 47 fm or W ' 30.7 keV ),
we get PCell ∼ 6 MW, which is of the order of the fig-
ure that we did obtain from nuclear theory alone. This
fact makes us confident in the correctness of the derived
result.

FIG. 3. Optimal achievable power of the standard Cell,

P[Cell] as a function of the applied confinement electric po-

tential V0, B = 3.73 T and ϑ = 0.0915.

V. DISCUSSION

For a compact reactor of small size, a new type of fu-
sion technology can be developed according to the basic
conditions described in this article, however, some prac-
tical considerations must be taken into account. First
recall that this possibility arose from imposing, to the
standard Penning-Malmberg ion trap, the parametric re-
lations in Eqs. 3 and 4, which lead to the necessary res-
onant kind of ion confinement. On the other hand, the
fusion conditions of the trap are the key configurations
satisfying the system in Eqs. 13 and 14 and, very promis-
ing and satisfactorily, both, the resonant and the opera-
tive conditions for Deuteron confinement, are found, pre-

cisely, within the range of the current state of the art
technological capabilities. In other words, due to the res-
onance the Coulomb barrier does not appears as an ob-
stacle for fusion. Additionally, one must also expect that
a pure Helium-3 Fusion Cell will work in exactly the same
principles than the Deuterium one exposed in this arti-
cle. Recall such Helium-3 Cell will be aneutronic and,
as a safe reactor, it opens the possibility to implement a
sort of thermonuclear battery in the event that it could
power an autonomous device provided with some finite
reservoir of Helium-3 gas. Notwithstanding with this,
even though the physics of both types of cells should be
very alike, it does not necessarily imply that their engi-
neering designs, which have to be associated with solving
the problems of each type of reactors, should be also, in
turn, similar. Therefore the Helium-3 Fusion Cell will be
studied separately.

A second consideration is that, since the fuel enters
the trap chamber in a pulsating manner, experimental
analysis must be performed to determine the best circuit
breaker frequencies required to provide the ion resonance
stability conditions after the fuel has been released and
once the initial power-up has been done, i.e., most likely,
in practical situations, some thermal relaxation time will
be needed to regulate the ignition cycles. Third, and
no less important than the power cycle problem, is the
resonant configuration time scale problem that arises be-
cause the resonance must be obtained after adiabatically
adjusting the intensity of the rotating wall to the reso-
nant one, an operation which must be achieved in times
much greater than that corresponding to the speed of the
fusion reaction (which can be estimated in the order of
ns). These Fusion Cell engineering issues remain to be
elucidated.
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Appendix A

The ion confinement of Deuterium nuclei in a cylin-
drical Penning-Malmberg trap, with a rotating wall elec-
tric quadrupolar field, will be reviewed to find that, to-
gether with standard magnetron trajectories with rapid
cyclotron rotation, there are coalescing orbits towards
the center of the trap, which are also compatible with the
cyclotron degree of freedom. The second class of trajec-
tories will become very probable when special resonance
conditions are given for the intensity of the quadrupolar
field. This possibility is very promising since, contrarily
to the case of neutral plasmas, the confinement stabil-
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ity of positively charged plasmas is warranted and no
Magneto-Hydrodynamical instabilities are expected.

A cylindric Penning Malmberg trap is characterized by
the introduction of an axial magnetic field B and a elec-
trostatic potential V0, in a cylindrical cavity where the
ions are introduced. Additionally the full stability can
be obtained with the help of a rotating electric field with
angular frequency ω (see Ref. [10] ) and field strength
λ; in this case, the motion of the ions in the trap is
decomposed into separated rotationally confined mode
and an axial oscillation. Let q be the charge of the ion,
then, the Lagrangian is given in terms of the electrostatic
quadrupole and the magnetic field frequencies of the trap,
i.e., denoting the cyclotron frequency Ω = qB/m

L=

∑
i

1
2
m{ẋ2

i+ẏ
2
i +ż2

i + Ω(xiẏi−yiẋi)}−Ut(ri), (A1)

Ut(r)=qV0+
1
2
m{ω2

z [z2
−

1
2
ρ2]+λω2

z [(x2
−y2) cos 2ωt−2xy sin 2ωt]},

and ρ2
=x2

+y2. This rotating quadrupolar electrical po-
tential wall of intensity λ might be required for the
adiabatic stability of the ions in the trap as it will be
confirmed down from. Let us consider the rotating
coordinate frame which rotates with angular frequency
ω: (x, y)→ (ξ, ζ).

x = ξ cos(ωt) + ζ sin(ωt),

y = −ξ sin(ωt) + ζ cos(ωt).

Then the rotating wall quadrupole perturbation becomes
time independent,

(x2 − y2) cos(2ωt)− 2xy sin(2ωt)→ ξ2 − ζ2, (A2)

L=

∑
i

1
2
m{ξ̇2

i +ζ̇2
i +ż2

i + (Ω−2ω)(ξiζ̇i−ζiξ̇i)}−U ′(ri), (A3)

U ′(r)=qV0+
1
2
mω2

zz
2
−
mρ2

4
ω2
z+

mρ2

2
Ωω−mρ

2

2
ω2

+
m
2
λω2

z(ξ2
−ζ2).

The constant energy potential term qV0 will be omitted
in the rest of this supplement.

The z coordinate motion is an harmonic oscillator of
frequency ωz. The restoring force gives the effective axial
component of the electric field eEz = −mω2

zz. Along these
lines, if the density of the plasma cloud is n, Ez can be
thought as that coming from the displacement of a posi-
tive charge in the plasma cloud (effectively a relative neg-
ative charge) ∆q = −qz

∮
dSn. Then,

∮
EzdS = ∆q/ε0 and

from this the charge density becomes

n =
mω2

zε0
q2

. (A4)

In order to compensate the axial displacement of every
ion, this motion should be correlated with that of some
other ion in the opposite z coordinate; moreover this z
axis degree of freedom can be assumed to be thermal and,
therefore, for these two correlated ions

2× 1

2
kBT = 1

2
µω2

zz
2
max. (A5)

On the other hand, thermodynamical equilibrium makes
sense if there are also microscopic collisions between pairs
of ions providing the appropriate internal Coulomb field
screening at the Debye length λDe =(ε0kBT/q

2n)1/2. Along

these lines, plasma density fluctuations will appear. For
those ion aggregates, as it can be seen from inspecting
the Lagrangian in the quadrupole stroboscopic rotating
frame, the trajectories should be determined by a guiding
orbit of angular velocity ω plus a rapid cyclotron oscilla-
tion of reduced frequency Ω′ = Ω − 2ω. To such a degree
to avoid dynamical plasma instabilities every charge fluc-
tuation in the plasma should appear at two diametrally
complementary positions (this fact is also warranted ow-
ing to the cylindrical symmetry of the system).

In order to determine the exact orbits of what may
represent those complementary bundles of ions, let us
first recall that in the rotating frame the net quadrupole
radial force can be averaged out to zero in every cy-
cle (〈Fq〉= − λmω2

z〈ρ(t) cos 2ωt〉→∼0, for 0≤ωt≤2π ). In-
deed, three forces are acting on each of the ions, namely,
the centrifugal force +mω2ρ , the radial electric force
+

1
2
mω2

zρ and that one associated with the radially electric
field induced by the rotation ω through the direction of
the axial magnetic field whose value is −mωΩρ. It is this
field that will provide the radial confinement. To see how,
recall that, from the symmetry of a cylindrical trap, the
total angular momentum (that from the ions plus that
from the magnetic field) L=

∑
i{mivθiρi + qBρ2

i /2} is pre-
served and, therefore, for instance for large B,

∑
i ρ

2
i must

reach some constant, which, as said, implies radial con-
finement; this argument is due to O’Neil (Ref. [11], Ref.
[12]). With that in mind, the simplest case where the per-
turbed quadrupole frequency should be taken is the one
where the net radial force acting on each of the charges
is zero. Then,

ω2
z=2ω(Ω− ω). (A6)

It means that a ”trap angle” can be defined such that

ω2
z =

1

2
Ω2 sin2 ϑ, ω = Ω sin2(ϑ

2
). (A7)

Eq. A6 corresponds to the confinement situation of a
thin, rigidly rotating, spheroid of plasma at angular ve-
locity ω (Ref. [13] Ref. [14]). Recall also that for that
confined cloud of ions of mass m and charge q = Ze a
relation between the axial frequency ωz , the cylindric
radius R0 and the applied electric potential V0 can be
found as the solution of V (R0) = 0, where, according to
Eq. A4, V (R) = V0 − m

4
ω2
zR

2/q. This gives, ω2
z = 4qV0

mR2
0
,

Lagrange’s equations read (denote τ(t)=Ω′t and
ε=λω2

z/Ω
′2 )

d2ξ

dτ2
− dζ

dτ
+ ξε = 0,

d2ζ

dτ2
+
dξ

dτ
− ζε = 0. (A8)

Elseways, since the Lagrangian is not
time dependant, the energy is preserved
and a first integral of motion is obtained

E=

∑
i{ξ̇i∂ξ̇iL+ζ̇i∂ζ̇iL}−L=

∑
i
m
2
{ξ̇i

2
+ζ̇i

2
+λω2

z(ξ2
−ζ2)}. This

means that the motion is bounded and that
a time period t0 can be found such that
2E/(Ω′2m)=ε

∑
i{ξi(t0)2

−ζi(t0)2}.
As said, the orbits of the ions are combinations of

rapid bare cyclotron Ω′ oscillations plus a slow guiding
center magnetron trajectory of angular velocity ω which
becomes stabilized by the rotating quadrupole force.



7

Notwithstanding with this, other solutions can be seen
as representing binary collisions at the center of the trap.

Define, η=

√
1 + 4ε2, σ=

√
1/2(η − 1)→ε , γ=

ε+σ2

σ
→1 ,

β=

√
1/2(η + 1)→1 and γ′= − β

ε+β2→ − 1 , for ε�1. With

this notation the exact Eq. A8 solutions are

ξh=a coshστ, ζh=aγ sinhστ,

ξC=b cosβτ, ζC=bγ′ sinβτ. (A9)

The ξC, ζC should correspond to the mentioned bare cy-
clotron orbits (see e.g., Hasegawa et al. Ref. [10] for the
exact solutions of the cyclotron orbits in the rotating wall
trap configuration). Thus, for instance, if the general so-
lution is ~r = ~rh + ~rC , the limit ε → 0 is just the usual
Penning trap constant radius magnetron orbit |~r| = a
provided with a rapid cyclotron oscillation around this
guiding orbit.

Incidentally, in spite of the fact that ξh, ζh can be seen
as spurious solutions (they are not bounded hyperbolae
that do not meet the required confinement conditions),
recall that, admissibly, some of the actual orbits could
also be represented by linear combinations of these hy-
perbolic plus the bare cyclotron solutions:

ξ(i)
=ξ

(i)
h + ξ

(i)
C , ζ(i)

=ζ
(i)
h + ζ

(i)
C , (A10)

trajectories that would likely exist during some period of
time t0, say, −t0≤t≤t0, .We will take this for granted and
now let us be concerned with identifying the physical
situations that these orbits represent.

Then, the numerical simulation shows that, in the ro-
tating frame, the trajectory is just an hyperbola pro-
vided with rapid cyclotron oscillations having two turn-
ing points (at which ξ̇(t0)=ζ̇(t0) = 0.) Is obvious that
the physical situation corresponds to the orbits of two
long range coupled ion density fluctuations that collide
(and repel each other) at the center of the trap with
ξ(1)

=−ξ(2), ζ(1)
=−ζ(2). This is obviously correct because,

otherwise, single ions would not preserve linear momen-
tum individually. The situation is shown in Fig. 4.

For two correlated ions clumps, these hyperbolic tra-
jectories are perfectly valid solutions from Eq. A3 which,
indeed, preserving the rotational symmetry of the prob-
lem, may be seen as a sum of terms that can be grouped
and integrated for every two arbitrarily large clumps co-
ordinates separately. On the other hand, the physics that
this Lagrangian describes is just the diamagnetism of the
charged plasma cloud, i.e., the situation in which the in-
ternal plasma currents modify the intensity of magnetic
field. This diamagnetic behavior can be deduced from the
fact that, in the rotating frame, the field intensity felt by
the ion becomes B → B − 2mω/e, which mathematically
corresponds to the Coriolis-like shift of the cyclotron fre-
quency seen in Eq. A3, i.e., Ω→ Ω− 2ω. This means that
the collective properties of the plasma will also hold in
this case (including Brillouin’s theorem for the limit of
the number density of the ion plasma cloud). Yet, every
coordinated two ions hyperbolic orbit will have a junc-
tion point at the center of the trap, thereby largely in-
creasing, locally and instantaneously, the density at that

point, a fact that shall not be regarded as a contradic-
tory statement. To avoid this, it must be assumed that
the coalescing orbits of the ions occur with some prob-
ability, and, therefore, the question of whether there is
any method that stabilizes this probability must be stud-
ied, in other words, what the special conditions for the
trap parameters should be leading the plasma to acquire
a new collective state, in which the deuterium nuclei will
collide naturally in the center at a predictable rate. In
this investigation one could be guided from some dynam-
ical analogies. Take, for instance, the case of an inverse
pendulum with some forced time periodic term. In this
case, by varying the intensity of the time periodic force,
depending on the length of the pendulum, some solu-
tions can be found that renders the inverse pendulum
stable. Following exactly this analogy, one guess that
some special relation between the trap frequencies and
the quadrupole field parameters, ω and λ, will be required
in order to render the plasma to a new regime of stability
in such a way that the probability rate of the hyperbolic
orbit corresponding to two correlated ion clumps be pre-
dictable. Due to the fact that collectively the plasma
should preserve the internal electro-dynamical equilib-
rium some dynamical collective motion transition for the
plasma should also occur.

Let us assume that this situation does indeed exist; we
call this as the Resonant Ionic Confinement solution first
introduced in [7]. The only relevant degree of freedom
ought be the relative distance between the two charged
aggregates, %=2(ξ2

+ζ2)1/2 . For this coordinate, the colli-
sion is described from the Lagrangian Eq. A3 replacing
ξ=% cosωt, ζ=ρ cosωt, and m=µ=m/2

FIG. 4. Two ion density clumps collision at the center of a
cylindrical Penning trap.

L=
1
2
µ{%̇2 + 1

2
ω2
z%

2 − ω2
z%

2λ cos 2ωt}. (A11)

The Energy functional reads

H=
1
2
µ{%̇2 − 1

2
ω2
z%

2 + ω2
z%

2λ cos 2ωt}. (A12)

For the periodic orbits that we are looking at it is possible
to calculate their average energy which should be some
constant of motion

〈H〉 ∝ 1
2
µṙ2

max − 2qV0(RC/R0)2 (A13)
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Recall that this quantity refers to the radial part of the
motion and that it does not include the contributions
from the fast bare cyclotron mode. Denoting ϕ = ωt and

χ =
ω2
z

2ω2 = cot2(ϑ
2

) the equation of motion reads

d2

dϕ2 %− {χ− 2λχ cos 2ϕ}% = 0. (A14)

Eq. A14 is Mathieu’s equation whose time symmetric so-
lution is obtained in terms of the Mathieu Cosine func-
tion:

%(ϕ) = 2RC
c
Ce(−χ,−λχ, ϕ), with c = Ce(−χ,−λχ, 0).

Thus, as in the case of the inverse pendulum, there are
periodic stable bound solutions only within a very narrow
parametric region λ(χ) (see Ref. [15]), they have period
π for the variable ϕ. For ωz�ω, numerically, this para-
metric stability constraint corresponds to a dependency
between the quadrupolar electric force intensity and the
parameters of the Penning trap

λ→ 1
2

+ 1/
√

2χ (A15)

Additionally, the closest distance between the two ion
bundles defines the squeezing factor, κ, of the coalescing
orbits, i.e., numerically

ln{%0/2RC} → lnκ = 1
2
− 1.35

√
χ (A16)

here %0 ≡ %(π/2) .The implication is that, if the res-
onant condition in Eq. A15 is satisfied, any closeness,
even small, between the two positive ion clumps can be
reached near the center of the trap when χ� 1.

Eqs. A15 and A16 constitute the grounds of the Res-
onant Ionic Confinement Method.

Given that the motion is confined the average energy
must be some constant and, taken this constant 〈H〉 = 0
we get the dynamical constraint,

1
2
µṙ2

max − 2qV0(RC/R0)2 = 0, (A17)

that will be useful later on.
Owing to the existence of the quadrupole, the mag-

netron degree of freedom is stabilized and the plasma
is macroscopically described as a rigid rotor of angular
velocity ω. Notwithstanding with this, microscopically,
each individual ion radial velocity should be Maxwellian
and the stability of the plasma requires that the solid
rotor energy be thermal. Incidentally, the actual in-
ertia momentum of every ”rigidly rotating” stabilized
thin disk of plasma becomes IDisk =

∑
i∈Disk

mir
2
i =

1
2
NDiskmR

2
C, providing a rotational energy giving by

EDisk = 1
2
IDiskω

2; yet, to this rotational degree of free-
dom of each individual ion, a thermal energy kBT/2 must
be allocated. Along these lines, the condition of thermal
equilibrium of the stabilized, rigidly rotating, plasma is
compelled to be

NDisk ×
kBT

2
=

1

2
IDiskω

2.

Imposing that
ωRC =

√
kBT/µ (A18)

which, since ω ' Ω/(χ + 1), also implies, in the approx-
imation ωz � ω, that χ ' qV0

kBT
(RC
R0

)2. Additionally, the

density clumps in the coalescing orbits are practically
confined in the center of the trap most of the time and
they move away to reach some maximum confinement ra-
dius RC ≤ R0 where they bounce back again to the cen-
ter. In this case, the ions inside those large aggregates,
may interact individually when, owing to the resonance,
the relative distance between the clumps is reduced to
a tiny minimum. It is straightforward to derive, after
Eqs. A4, A5 and A17, the following relations for χ� 1

B ' 2χ

qRC

√
kBTµ, (a)

n ' ε0
µχ

B2, (b)

zmax ' RC/
√
χ, (c)

N = n× 4/3πR2
Czmax ' nχ× Vc, (d)

ṙmax ' 2

√
χkBT

µ
= 2Ω

RC√
χ
. (f) (A19)

where Vc = V/χ = 4
3
π(RC/

√
χ)3 is the clump volume.

Therefore, we see, the confined plasma volume can be
calculated as if there were χ granular spheres of ions of
radius RC/

√
χ. From these equation it is possible to derive

that

n = {(N/χ) 2× 1

2
kBT/EC} × {(N/χ)/ 4

3
πR′3}

where R′ = RC/
√
χ, whereas, EC =

(qN/χ)2/(8πεoR
′), corresponds to the Coulomb en-

ergy of a bubble of N/χ ions on the surface of a sphere
whose radius is precisely R′. Yet, recall that the plasma
is fully thermal, imposing that the two dimensional
surface energy satisfies 2× 1

2
(N/χ)kBT = EC.

These thermal conditions of the plasma are, indeed,
fully compatible with the existence of small fluctuations
in the statistics that, according to our interpretation of
the two coalescing ion density clumps, in the resonant
case, will orbit the cloud at periodic Mathieu trajectories.
For some clump pair in the plasma, the resonant situation
will hold with some probability, say ℘[i ∈ {coalescing}]. To
estimate this recall that, owing to the periodic radial dis-
placement of the density bundles, analogously to the ax-
ially periodic degree of freedom, dynamical equilibrium
imposes that there should be some effective radial restor-
ing force qδE%=−µ(2ω)2δ%. Again, this corresponds to a
negative effective displaced charge (a hole in the posi-
tively charged ion cloud) of −qδ%n′

∮
dS, where n′ is the

density of the displaced density clumps inside the plasma.
Now, Gauss theorem applied to a thin disk surface of the
plasma states that n′ = 2mε0ω

2/q2, which, from its sta-
tistical definition n′≡n℘, and together with Eqs. A4 and
A6, gives

℘ =
ω

Ω− ω = χ−1, (A20)

which, given that ω<Ω/2, it is always lower than 1 as it
should be. Recall that near to the center of the trap,
the minumum distance between the colliding ions can be
approximated by %(t) ' |%0 + 2RCε cos Ω′t|, it means that
the distance obtains its minimum when Ω′∆t=π.
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