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Abstract—Information Reconciliation is a mechanism that
allows to weed out the discrepancies between two correlated
variables. It is an essential component in every key agreement
protocol where the key has to be transmitted through a noisy
channel. The typical case is in the satellite scenario described by
Maurer in the early 90’s. Recently the need has arisen in relation
with Quantum Key Distribution (QKD) protocols, where it is
very important not to reveal unnecessary information in order
to maximize the shared key length.
In this paper we present an information reconciliation protocol

based on a rate compatible construction of Low Density Parity
Check codes. Our protocol improves the efficiency of the reconci-
liation for the whole range of error rates in the discrete variable
QKD context. Its adaptability together with its low interactivity
makes it specially well suited for QKD reconciliation.
Index Terms—Reconciliation, low-density parity-check (LDPC)

codes, puncturing, shortening, rate-compatible.

I. INTRODUCTION

The general scenario for information reconciliation is one
in which two parties have two sets of correlated data with
some discrepancies between them. The situation is equivalent
to transmit the data from one party to the other through a noisy
channel, akin in the satellite scenario described by Maurer [1].
In a Quantum Key Distribution (QKD) protocol, errors are

generated in the communications channel either by the interac-
tion of the quantum information carrier with the environment,
by imperfections in the QKD device or by an eavesdropper.
The two parties participating in the communication, Alice
and Bob, thus have two sets of correlated data from which
a common set must be extracted. This problem has been
previously subject to consideration [2], [3], [4], [5], [6]. It is
a process known as key distillation, that requires a discussion
carried over an authenticated classical channel. It is interactive
in the sense that it needs communications through the channel.
Since it can also be listened by an eavesdropper, it is important
to minimize the amount of information that have to be trans-
mitted in the reconciliation process. Any extra information
limits the performance of the QKD implementation. In theory
one could minimize the information leakage using a highly
interactive protocol, but in practical applications this would
lead to a prohibitively large communication overhead through
the network, limiting also the effective keyrate.
It is in this scenario where modern Forward Error Correction

(FEC) is an interesting solution. The idea is to make use of
FEC’s inherent advantage of requiring a single channel use

to reconcile the two sets. In [6] it was analyzed the use of a
discrete number of Low-Density Parity-Check (LDPC) codes
optimized for the binary symmetric channel. As a consequence
the efficiency exhibited an staircase-like behaviour: each code
was used within a range of error rates and the reconciliation
efficiency was maximized only in the region close to the code’s
threshold.
In this work, we develop the idea of using LDPC codes op-

timized for the binary symmetric channel. We take these codes
as an starting point and develop a rate compatible information
reconciliation protocol with an efficiency close to optimal. In
particular, the proposed protocol builds codes that minimize
the exchanged information for error probabilities between 1%
and 10%1, the expected values in real implementations of
QKD systems.
This solution addresses the rate adaptation problem (open

problem 2) from the recent review paper of Matsumoto [8] in
which he lists the problems that an LDPC solution should
overcome in order to compare advantageously to current
interactive reconciliation protocols.
The paper is organised as follows: In Section II the main

ideas are discussed. A new Information Reconciliation Proto-
col able to adapt to different channel parameters is presented
and its asymptotic behavior discussed. In Section III the results
of a practical implementation of the protocol are shown. In
particular we have analyzed the rate compared to the optimal
value and the reconciliation efficiency.

II. RATE COMPATIBLE INFORMATION RECONCILIATION
Information Reconciliation
Let X and Y be two of correlated variables belonging to

Alice and Bob, and x and y their outcome strings, Informa-
tion Reconciliation [2] is a mechanism that allows them to
eliminate the discrepancies between x and y and agree on a
string S(x) —with possibly S(x) = x.
The problem of information reconciliation can be seen as

the source coding problem with side information (see Fig.
1). Thus, as shown by Slepian and Wolf [9], the minimum
information I that Alice would have to send to Bob in order
to help him reconcile Y and X is Iopt = H(X |Y ). Taking
into account that real reconciliation will not be optimal, we

1The maximum error thresholds for extracting an absolute secret key in a
QKD protocol is 11% [7].
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Fig. 1. Source coding with side information.

use a parameter f ≥ 1 as a quality figure for the reconciliation
efficiency:

Ireal = fH(X |Y ) ≥ Iopt (1)

Here we will concentrate on binary variables, which apply
to discrete variable QKD, although the ideas are directly
applicable to other scenarios.
The most widely used protocol for information reconcilia-

tion in QKD is Cascade [2], because of its simplicity and
good efficiency. Cascade is a highly interactive protocol that
runs for a certain number of passes. In each pass, Alice and
Bob both perform the same permutation on their respective
strings, divide them in blocks of the same size and exchange
the parities of the blocks. Whenever there is a mismatch they
perform a dichotomic search to find an error, finding one
usually means discovering more errors left in previous passes.
The main handicap of Cascade is its high interactivity.

Buttler et al [10] proposed Winnow, a reconciliation protocol
where instead of exchanging block parities, Alice and Bob
exchange the syndrome of a Hamming code. Their protocol
succeeded in reducing the interactivity but, in the error range
of interest for QKD, the efficiency was worse than that of
Cascade.
There has been further work on improving the efficiency of

Cascade-like protocols. In [11] the block size is optimized,
while in [12] the emphasis is put on minimizing the informa-
tion sent to correct one error on each pass.

Definitions
LDPC codes were introduced by Gallager in the early

60’s [13]. They are linear codes with a sparse parity check
matrix.
A family of LDPC codes is defined by two generating

polynomials [14], λ(x) and ρ(x):

λ(x) =

dsmax
∑

i=2

λix
i−1 ; ρ(x) =

dcmax
∑

j=2

ρjx
j−1 (2)

where λ(x) and ρ(x) define degree distributions. λi and ρi

indicate the proportion (normalized to 1) of edges connected
to symbol and check nodes of degree i, respectively. The rate
R0 of the family of LDPC codes is defined as:

R0 = 1 −

∑

i λi/i
∑

j ρj/j
(3)

Two common strategies to adapt the rate to the channel
parameters are puncturing and shortening [15]. Puncturing

Fig. 2. Example of puncturing and shortening applied to a code represented
by a Tanner graph. The rate of the original code is R = (n − m)/n =
(8−4)/8 = 1/2. After puncturing two symbol nodes (indicated in the graph
with dashed lines) the new rate is increased to R = (8− 4)/(8− 2) = 2/3.
Shortening one symbol of the original code (indicated with thick solid lines)
leads to a new rate of R = ((8 − 1) − 4)/(8 − 1) = 3/7. Puncturing
two symbols and shortening one the original code leads to a rate of R =
((8 − 1) − 4)/(8 − 2 − 1) = 3/5.

Fig. 3. Protocol sequence diagram.

means deleting a predefined set of p symbols from each word,
converting a [n, k] code into a [n − p, k] code. Shortening
means deleting a set of s symbols from the encoding process,
converting a [n, k] code into a [n − s, k − s] code. Both
processes allow to modulate the rate of the code as:

R =
R0 − σ

1 − π − σ
=

k − s

n − p − s
(4)

where π and σ represent the ratios of information punctured
and shortened respectively, and R0 is the rate of the initial
code (see Fig. 2 for an example).

The protocol
Standard puncturing and shortening need an a priori knowl-

edge about the channel in order to adapt the rate. The Bit
Error Rate (BER) in the case of QKD protocols is an a priori
unknown value, hence it is important to be able to construct
codes that can adapt to the varying BER values that might
appear during a QKD transmission. In order to cope with this,
we propose an inverse puncturing and shortening protocol, that
is performed after the distribution of the correlated variables.
The protocol assumes the existence of a shared pool of

codes of length n, adjusted for different rates. Depending
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on the range of crossover probabilities to be corrected, a
parameter δ is chosen to set the proportion of bits to be either
shortened (σ) or punctured (π; δ = π + σ). δ defines the
achievable rates, R, through:

R0 − δ

1 − δ
≤ R ≤

R0

1 − δ
(5)

with R0 being the rate of the code selected from the pool. For
an [n, k] code this would mean n · π bits punctured, n · σ bits
shortened and n · (1 − δ) bits transmitted over the BSC (see
Fig. 4). The number of symbols not to be sent is d = $δ · n%.
The protocol goes through the following steps:
Step 1: Alice sends to Bob a message x, an instance of

variable X , of size & = n − d through a BSC of crossover
probability p (or a black box behaving as such). Bob receives
the correlated message, y.
Step 2: Bob chooses randomly t bits of y, m(y), and sends

them and their positions, pos(y), to Alice.
Step 3: Using pos(y), Alice extracts m(x) and estimates

the crossover probability:

p∗ =
m(x) + m(y)

t
(6)

Once Alice has estimated p∗, she knows the theoretical rate
for a punctured and shortened code able to correct the string.
Now she must decide what is the optimal rate corresponding
to the efficiency of the code she is using: R = 1−f(p∗)h(p∗);
where h is the binary entropy function and f the efficiency
(e.g. Tab. I). Then she can derive optimal values for s and p:

s = &(R0 − R(1 − d/n)) · n'

p = d − s
(7)

Alice creates now a string x
+ = g(x,σp∗ ,πp∗) of size n.

The function g defines which n − d positions take the values
of string x, the p positions that take random values, and the
s positions that take values known by Alice and Bob. The
set of n − d positions, the set of p positions and the set of s
positions and their values come from a synchronized pseudo-
random generator. She then sends s(x+), the syndrome of x+,
to Bob as well as the estimated crossover probability p∗. The
information gained by Eve with the side information (e.g. the
syndrome) is discussed in [5].
Step 4: Bob can reproduce Alice’s estimation of the op-

timal rate R, the positions of the p punctured bits, and the
positions and values of the s shortened bits: he can create the
corresponding string y

+ = g(y,σp∗ ,πp∗). Bob should now
be able to decode Alice’s codeword with high probability, as
the rate has been adapted to the channel crossover probability.
He finally sends an acknowledge to Alice to indicate if he
successfully recovered x

+.
Example: Calculation of s and p for step 3. Alice and Bob

use a [106, 5 × 105] code, d = 105, and they have found out
that the efficiency of their reconciliation behaves as f(p) =
1.1 + |p − 0.1|. When Alice estimates the discrepancy, she
finds that p∗ = 0.08. If the code were optimal, it would have

Fig. 4. Channel model. The protocol described can be interpreted as a
communication through three channels with different probabilities: a noiseless
channel with probability σ, a BEC(1) with probability π, and a BSC(p) with
probability 1 − δ.

been designed with a rate R = 1 − f(0.08)h(0.08) = 1 −
(1.12)(0.402) = 0.55. Then she obtains s = 2.25 × 105, and
p = 2.75 × 105.
In the case in which the protocol is used to reconcile secret

keys, several modifications have to be done. In step 1 the size
should be increased by t, & = n−d+ t. In step 2, Bob should
discard from his string, x, the t bits that have been published.
Finally, in step 3, Alice should also discard the t published
bits from hers.

Performance analysis
We are first interested in the range of rates in which the

protocol can be used and the expected efficiency if the codes
are long enough. The threshold value of a code is calculated
using the density evolution algorithm [14], and in particular we
have implemented the discretized version of Chung et al [16].
The equation used to track the evolution of the density function
is:

p(l+1)
u = ρ(pu0

∗ λ(p(l)
u )) (8)

where p(l)
u is the probability mass function at the symbols

during iteration l, and pu0
is the initial message density

distribution, which in our case is:

pu0
(x) = (1 − δ)pBSCu0

(x) + π∆0(x) + σ∆∞(x) (9)

where pBSCu0
(x) = p∆−log p

1−p
(x) + (1 − p)∆

−log 1−p

p

(x), and
∆t(x) = δdirac(x − t).
On Fig. 5 we track the evolution of the threshold for

the code with rate one half in [6], it can be observed how
different values of δ offer a tradeoff between the range of
rates achievable and the efficiency.
In [14] it is presented a condition for decoding stability:
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Fig. 5. Theoretical threshold.

λ′(0)ρ′(1) <
1

e−r
(10)

where e−r is defined as:

e−r =

∫

%

pu0
(x)e−x/2dx (11)

operating:

λ2 <
1

(2
√

p(1 − p)(1 − δ) + π)ρ′(1)
(12)

which imposes a limitation when choosing a code: it has to
be stable for the whole range of rates in which it will be used.
A code with λ2 close to the stability limit for R0 can become
unstable for for high values of π.

III. SIMULATION RESULTS
In order to understand the behavior of the protocol described

in section II, we analyze the rate compared to the optimal
value.
The family of LDPC codes used in our simulations have

been obtained from [6] and the Tanner graphs have been
constructed using a modified Progressive Edge-Growth (PEG)
algorithm [17]. This improved PEG construction is based on
the original [18], but it also takes into account ρ(x), the check
distribution polynomial. We have used a single code of length
n = 200.000, a reasonable lower bound of the expected length
in QKD transmission. Bigger n values would improve the
performance of the protocol (by increasing the reconciliation
efficiency). The rate is one half, that allows to cover all range
of expected BERs. Simulations have been done with an LDPC
decoder based on belief propagation, with a maximum number
of 2000 iterations per simulation. The LDPC decoder has been
modified to work with puncturing and shortening, adding two
new log-likelihood ratios for the initialization of puncturing,
γp = 0, and shortening, γs = ∞, respectively. The points in
the different figures have pbit < 10−6.
In Fig. 6 we present the maximum BER reached over a

BSC with the rates going from R = 0.5 to 0.7 using different
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Fig. 6. Rate achieved over a BSC with δ ∈ {0.1, 0.25, 0.5}.
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Fig. 7. Enlarged figure of the portion marked with a dashed line in Fig. 6.

values of the δ parameter to regulate the puncturing and
shortening. The strong dependence of the rate with parameter
δ is clearly seen. This figure shows the rate achievable for
δ ∈ {0.1, 0.25, 0.5}, and it is compared with the rate achieved
by the code in the case that it were only punctured and
with the Shannon limit. These results highlight that, once the
reconciliation problem has been characterized and it is known
the range of possible error rates, δ should be chosen as small
as possible. If δ is found to be too big, then it should be
considered enlarging the pool with codes that cover different
rates. This behaviour can be more clearly seen in the enlarged
figure (Fig. 7) displaying the rate range from R = 0.5 to 0.55.
The minimum value of δ that allows to cover the entire interval
is δ = 0.1. For this value the decoding performance is similar
to [6]. However, with this protocol we are able to reconcile a
continuum of crossover probabilities. For the other values of
δ, the performance is worse, however it should be noted that
carefully choosing which symbols should be punctured and
which ones shortened could improve on these results [19],
[20], [21].
Looking at Table I we can see the effect of the protocol on

the efficiency of the reconciliation. When close enough to R0

it is close to one, and for small enough δ values it remains
close to one for the whole set of rates, which is not the case
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TABLE I
EFFICIENCY CALCULATED FROM EQ. 1.

δ = 0.1 δ = 0.25 δ = 0.5
Ra BERb f c BER f BER f
0.51 0.0945 1.0855 0.0885 1.1356 0.0756 1.2675
0.52 0.092 1.0836 0.0868 1.1276 0.0739 1.262
0.53 0.0885 1.0892 0.0834 1.1355 0.0696 1.2895
0.54 0.0851 1.0957 0.0808 1.136 0.067 1.2966
0.55 0.0834 1.0877 0.0773 1.1457 0.0645 1.3048
0.56 0.0756 1.1382 0.0619 1.314
0.57 0.0722 1.1496 0.0584 1.3386
0.58 0.0705 1.1423 0.0559 1.3513
0.59 0.067 1.1557 0.0541 1.3659
0.6 0.0645 1.1598 0.0516 1.3651
0.61 0.0627 1.1531
0.62 0.0584 1.183
0.63 0.0567 1.1772
0.64 0.055 1.1715
0.65 0.0516 1.1945

aRate after puncturing and shortening.
bMaximum bit error rate corrected.
cCorresponding efficiency for random puncturing and shortening.

for the higher δ values as expected by the thresholds found in
Fig. 5.

IV. CONCLUSION
We have demonstrated how to adapt an LDPC code for

rate compatibility. The capability to adapt to different error
rates while minimizing the amount of published information is
an important feature for QKD key reconciliation. The present
protocol alows to reach efficiencies close to one while limiting
the information leakage and having the important practical
advantage of low interactivity.
Future work will concentrate on the optimization of the

puncturing and shortening processes, now done randomly.
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