
Towards an Optimal Implementation of Cascade
Jesus Martinez-Mateo, Christoph Pacher, Alex Ciurana and Vicente Martin

I. INTRODUCTION

Cascade [1] is probably the best known protocol for error
reconciliation in QKD. Although this is a highly interactive
protocol, since it requires many communication between the
parties, it is reasonably efficient and easy to implement.
Accordingly, a number of modifications and optimizations
have been proposed in the literature [2]–[5]. Most of these
works concentrate on how to optimize the efficiency of rec-
onciliation by modifying the block length, but others propose
modifications to the protocol itself, combining a version of the
original Cascade with a second algorithm with a specific focus
on improving the reconciliation efficiency [2], or the number
of channel communications [3].

The aim of this contribution is to study the modifications
of Cascade, comparing them with the original protocol on
the grounds of a full set of parameters, so that the effect
of these modifications can be fairly assessed. A number of
simulations were performed to study not only the efficiency
but also other characteristics of the protocol that are important
for its practical application, such as the number of communi-
cations and the failure probability. Note that, although it is
generally believed that the only price to pay for an improved
efficiency is an increased interactivity, when looking at all
the significant magnitudes a different view emerges, showing
that, for instance, the failure probability eliminate some the
supposed advantages of these improvements.

Simulation results were initially computed for the original
Cascade [1] and the modified version of this protocol proposed
in [2]. Correlated pairs of random bit sequences were gener-
ated using a congruential pseudo random number generator
with common (previously shared) seed. Given the channel
parameter Q (i.e., the quantum bit error rate or QBER), errors
were generated in one of the sequences simulating independent
Bernoulli processes with success probability Q.

II. CASCADE PROTOCOL

Initially, in [6] the authors propose a protocol for reconciling
errors based on a block parity exchange. Two correlated
sequences of bit values belonging to different parties are
processed in parallel. At each of the parties the sequence
is divided into blocks of equal length, then the parity is
computed for each block and their values are exchanged
through a public noiseless channel. This procedure detects all
blocks with parity mismatches. For all those blocks the parties
perform a binary search to find and correct one of the errors
that have occurred in the block. This procedure detects all odd
numbers of errors per block, but corrects only exactly one of
them. Thus, the proposed protocol needs to works iteratively.
In each successive pass the sequence is shuffled and further

0 0.02 0.04 0.06 0.08 0.1
Quantum bit error rate Q

1

1.05

1.1

1.15

1.2

1.25

1.3

R
ec

on
ci

lia
tio

n 
ef

fi
ci

en
cy

 f E
C

0 0.02 0.04 0.06 0.08 0.1
Quantum bit error rate Q

1

1.05

1.1

1.15

1.2

1.25

1.3

R
ec

on
ci

lia
tio

n 
ef

fi
ci

en
cy

 f E
C

Cascade orig. n=104 n=105 n=106

Cascade mod. n=104 n=105 n=106

k1=16

k1=8

Fig. 1. Average reconciliation efficiency.

parities are exchanged to detect and correct further errors. This
protocol is known as BBBSS or BINARY.

Later in [1] they realize that each detected error produces
side information that can be used to correct undetected errors
of previous passes. The protocol runs for a fixed number of
passes. In each pass, the parties divide their sequence into
blocks of equal length. The first block size is calculated as
a function of the estimated error probability in the quantum
channel Q or QBER, k1 ≈ 0.73/Q, and it is doubled for suc-
cessive passes, ki = 2ki−1. Whenever an error is found after
the first pass, it uncovers an odd number of additional errors
masked in the preceding passes and the algorithm steps back to
correct also one of them. Sometimes this correction uncovers
another error, starting a cascade of corrections. Therefore
this new protocol has been named Cascade. Note that, in a
practical implementation of Cascade, blocks and parities are
processed in parallel. Therefore, instead of exchange messages
with single parities we process and communicate ensembles
of parities (i.e., syndromes). Further, note that binary searches
(i.e., subblocks parities) are also processed in parallel.

Fig. 1 shows the average reconciliation efficiency as a
function of QBER. Simulated results were computed for
sequences of 104 bits length. We consider this block length
as a significant value given that hardware implementations
are feasible for this. Results for longer sequences were also
simulated but for a limited number of error rates. As shown,
Cascade’s efficiency does not improve for longer sequences
(i.e., short sequences can be corrected as efficiently as longer
ones), and the curve exhibit a saw behavior due to changes in



0 0.02 0.04 0.06 0.08 0.1
Quantum bit error rate Q

10-6

10-5

10-4

10-3

10-2

10-1

Fr
am

e 
er

ro
r 

ra
te

 ε
E

C

0 0.02 0.04 0.06 0.08 0.1
Quantum bit error rate Q

10-6

10-5

10-4

10-3

10-2

10-1

Fr
am

e 
er

ro
r 

ra
te

 ε
E

C

Cascade orig.

n=103

n=104

Cascade mod.

n=103

n=104

n=105

Fig. 2. Failure probability or frame error rate.

the value of the first block size k1.
Fig. 2 shows the failure probability or frame error rate

as a function of QBER. By failure probability we mean the
probability that sequences cannot be reconciled given that the
sequences belonging to both parties differ by at least one bit.

A. Protocol modification

In [2] the authors propose to perform the first two passes
of the original Cascade and later continue with a different
algorithm referred as BICONF. The BICONF(s) algorithm
works as follows. First, the parties agree on a random subset of
bits from their sequences. Then, they compute and exchange
the parity value of this subset, and perform two binary searches
if the parity differs: one for the chosen subset and other for the
complementary subset. This algorithm also works iteratively
updating the random subset of chosen bits in each iteration,
and it concludes when according to [1] it has been performed s
iterations, or according to [2] it has been performed s succes-
sive iterations without finding new errors. We have simulated
the version described in [2], where the authors propose to run
BICONF(s) with s = 10. Further, the authors propose to use
the following block sizes k1 ≈ 0.92/Q and k2 ≈ 3k1 for the
first and second pass of Cascade, respectively. The suggested
values should minimize the number of exchanged parities, thus
optimizing the reconciliation efficiency.

Fig. 1 shows that the modified protocol improves the effi-
ciency of Cascade, and —in contrast to the original protocol—
it further improves, although marginally, for longer sequences.
However, this modification has two problems. On the one
hand, it does not take into account that a pass of Cascade
with block size half of the sequence length (i.e., ki = n/2)
operates as BICONF but it can take advantage of the cascade
to correct possibly further errors in previous passes. On the
other, as shown in Fig. 2, the failure probability is significantly
higher. Therefore, the efficiency improve comes at the cost of
a higher frame error rate (a fact that is also typical for one-
way reconciliation with block codes). The figure also shows

0 0.02 0.04 0.06 0.08 0.1
Quantum bit error rate Q

1

1.05

1.1

1.15

1.2

1.25

1.3

R
ec

on
ci

lia
tio

n 
ef

fi
ci

en
cy

 f E
C

0 0.02 0.04 0.06 0.08 0.1
Quantum bit error rate Q

1

1.05

1.1

1.15

1.2

1.25

1.3

R
ec

on
ci

lia
tio

n 
ef

fi
ci

en
cy

 f E
C

Cascade orig. n=104

k1=73, p=1%

k1=37, p=2%

k1=15, p=5%

Fig. 3. Average reconciliation efficiency.

that, while the error rate decreases with the block length in
Cascade, this is not the case with the modified version where
for lengths of 105 bits the failure probability remains at 10−3.

B. Parameters optimization

In [4] different values for the first block size and subsequent
increases for this were considered and analyzed. According
to [4] the efficiency of Cascade is empirically optimal for k1 =
0.8/Q and ki = 5ki−1. Unfortunately, as in [2], only hundred
frames have been simulated which is not enough to empirically
verify the failure probability of the proposed protocol, and
fairfully compare this with the original Cascade.

We decide then to follow a different direction analyzing the
rateless behavior of Cascade—i.e., the ability of the protocol to
be adapted to variations in the communication channel. Results
were then computed using two different input parameters in-
stead of only QBER: (i) p the error rate value used to calculate
the first block size in Cascade, and (ii) Q the actual quantum
bit error rate, i.e., the value used to generate discrepancies in
the correlated sequences. Note that p may stand for a poor
estimate of Q. Therefore, the following simulations show how
the protocol behaves under time-varying channel conditions.
In addition, as discussed below, these simulations give us
information about some parameters used in the protocol (e.g.,
block sizes) while suggesting possible optimizations.

Fig. 3 shows the average reconciliation efficiency as a
function of QBER. Three different cases were considered, for
p = 1%, 2% and 5% (i.e., fixing k1) and variable QBER.
The efficiency of Cascade is also depicted in the figure. As
expected, it coincides with the new simulations in all the cases
when Q = p, but surprisingly, the efficiency improves in a
range of QBER values when Q > p. Again, as expected,
a price to pay for a better reconciliation efficiency is a
sharp increase in the number of exchanged messages. Also,
contrary to what we might expect from the above result, the
performance is not significantly affected regarding the failure



0 0.02 0.04 0.06 0.08 0.1
Quantum bit error rate Q

1

1.05

1.1

1.15

1.2

1.25

1.3
R

ec
on

ci
lia

tio
n 

ef
fi

ci
en

cy
 f E

C

Cascade orig.
Cascade mod. (1)
Cascade mod. (2)
Cascade mod. (3)

Fig. 4. Average reconciliation efficiency.

probability (see accompanying long write-up). In consequence,
these results clearly show that the original Cascade protocol
may be improved just by updating the first block size. The ef-
ficiency of Cascade is thus presumably optimal for k1 ≈ 1/Q.
In other words, the results suggest using as the first block
size the one that contains one error, on average. Note that this
was originally suggested in [5]. Its purpose is to maximize the
number of errors corrected during the first pass.

III. PROPOSED OPTIMIZATION

Based on the above results the behavior of Cascade with a
optimal first block size k1 = 1/Q and k2 = 2k1 is studied.
Note that we might mistakenly infer that the optimal value for
the second block size should be calculated similarly to the first
one. However, when we run the protocol with this criterion we
quickly realize that the efficiency worsens. We conclude then
that, while larger block sizes are less able to correct errors,
these allow to better follow the cascade and correct further
errors using the first block size. Unfortunately, with the current
theoretical framework we have no way to optimize this second
block size. This optimization is proposed for sequences of
104 bits length, adequate for hardware implementations. Thus,
taking into account that the simulated results suggest sizes for
the next blocks exceeding the half of the sequence length1,
the value used for ki is fixed to ki = ⌈n/2⌉ for i > 2.

Fig. 4 shows the average reconciliation efficiency as a
function of QBER. Cascade is compared to three modified ver-
sions: (1) the modified protocol proposed in [2], (2) the version
with the optimized parameters suggested in [4], and (3) the
version proposed here with 16 passes. As shown, the efficiency
is similar for the three proposed optimizations, corresponding
to approximately half of the efficiency of Cascade. As shown
in Fig. 5, all the optimizations exceed the number of communi-
cation rounds of the original protocol, but the proposed here is

1Once concluded the second pass, the residual error ε′EC suggests using
block sizes greater than the half of the frame length, i.e., 1/ε′EC > n/2.

0 0.02 0.04 0.06 0.08 0.1
Quantum bit error rate Q

20

40

60

80

100

120

140

C
ha

nn
el

 u
se

s

0 0.02 0.04 0.06 0.08 0.1
Quantum bit error rate Q

20

40

60

80

100

120

140

C
ha

nn
el

 u
se

s

Cascade orig.
Cascade mod. (1)

Cascade mod. (2)
Cascade mod. (3)

Fig. 5. Communication rounds.

0 0.02 0.04 0.06 0.08 0.1
Quantum bit error rate Q

10-6

10-5

10-4

10-3

10-2

10-1

Fr
am

e 
er

ro
r 

ra
te

 ε
E

C

0 0.02 0.04 0.06 0.08 0.1
Quantum bit error rate Q

10-6

10-5

10-4

10-3

10-2

10-1

Fr
am

e 
er

ro
r 

ra
te

 ε
E

C

Cascade orig.
Cascade mod. (1)
Cascade mod. (2)
Cascade mod. (3)

Fig. 6. Failure probability or frame error rate.

the one with fewer communications despite having undergone
16 passes. Finally, the failure probability is shown in Fig. 6.
Again, these results show that the optimization proposed here
also improves the others, with a constant failure probability
(i.e., independent of the QBER), and similar or better than the
original Cascade in a broad QBER range.

REFERENCES

[1] G. Brassard and L. Salvail, “Secret-key reconciliation by public discus-
sion,” in Eurocrypt’93, vol. 765, 1994, pp. 410–423.

[2] T. Sugimoto and K. Yamazaki, “A study on secret key reconciliation
protocol “cascade”,” IEICE Trans. Fundam. Electron. Commun. Comput.
Sci., vol. E83-A, no. 10, pp. 1987–1991, 2000.

[3] W. T. Buttler et al., “Fast, efficient error reconciliation for quantum
cryptography,” Physical Review A, vol. 67, no. 5, p. 052303, May 2003.

[4] H. Yan et al., “Information reconciliation protocol in quantum key
distribution system,” in ICNC 2008, vol. 3, 2008, pp. 637–641.

[5] R. N. Ii-Yung, “A probabilistic analysis of binary and cascade,” unpub-
lished manuscript.

[6] C. H. Bennett et al., “Experimental quantum cryptography,” J. Cryptology,
vol. 5, no. 1, pp. 3–28, 1992.


